A5841

BiMOS II 8-Bit Serial Input Latched Driver

Discontinued Product

These parts are no longer in production The device should not be purchased for new design applications. Samples are no longer available.

Date of status change: October 31, 2005

Recommended Substitutions:

For new customers or new applications, refer to the <u>A6841</u>.

NOTE: For detailed information on purchasing options, contact your local Allegro field applications engineer or sales representative.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, revisions to the anticipated product life cycle plan for a product to accommodate changes in production capabilities, alternative product availabilities, or market demand. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

BiMOS II 8-BIT SERIAL-INPUT, LATCHED DRIVERS

The merging of low-power CMOS logic and bipolar output power drivers permit the UCN5841A, UCN5841LW, and A5841SLW integrated circuits to be used in a wide variety of peripheral power driver applications. Each device has an eight-bit CMOS shift register and CMOS control circuitry, eight CMOS data latches, and eight bipolar current-sinking Darlington output drivers. The 500 mA npn Darlington outputs, with integral transient-suppression diodes, are suitable for use with relays, solenoids, and other inductive loads. All drivers can be operated with a split supply where the negative supply is up to -20 V.

BiMOS II devices have higher data-input rates than the earlier

BiMOS II devices have higher data-input rates than the earlier BiMOS circuits. With a 5 V logic supply, they will typically operate at better than 5 MHz. With a 12 V supply, significantly higher speeds are obtained. The CMOS inputs are compatible with standard CMOS and NMOS logic levels. TTL circuits may require the use of appropriate pull-up resistors. By using the serial data output, drivers can be cascaded for interface applications requiring additional drive lines.

The UCN5841A devices are furnished in a standard 18-pin plastic DIP; the UCN5841LW devices are in an 18-lead surface-mountable wide-body SOIC package; the A5841SLW devices are provided in a 20-lead wide-body SOIC package with improved thermal characteristics.

The A5841SLW and UCN5841LW drivers are also available for operation to a temperature of -40°C. To order, change the suffix from 'SLW' to 'ELW', or change the prefix from 'UCN' to 'UCQ'.

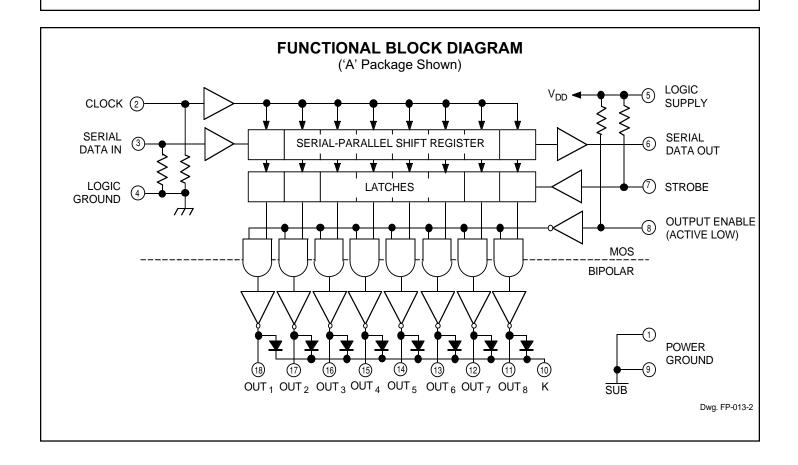
FEATURES

- To 3.3 MHz Data-Input Rate
- CMOS, NMOS, TTL Compatible Inputs
- Internal Pull-Up/Pull-Down Resistors
- Low-Power CMOS Logic and Latches,
- High-Voltage Current-Sink Outputs
- Output Transient-Protection Diodes
- Single or Split Supply Operation
- DIP or SOIC Packaging
- Automotive Capable

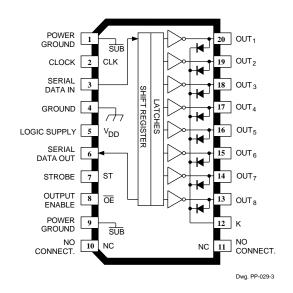
Always order by complete part number, e.g., **A5841SLW**.

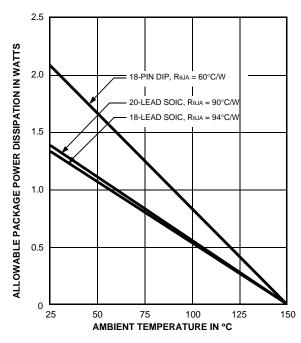
UCN5841A 18 OUT 1 V_{EE} 1 รบ่อ CLOCK 2 CLK OUT₂ SERIAL OUT₃ SHIFT REGISTER DATA IN LATCHES LOGIC OUT₄ GROUND LOGIC OUT₅ SUPPLY SERIAL 13 OUT_6 DATA OUT 12 OUT₇ ST STROBE 7 OUTPUT 11 OUT₈ ENABLE V_{EE} 10 รบ่า Dwa. PP-026-1

Note that the UCN5841A (dual in-line package) and UCN5841LW (small-outline IC package) are electrically identical and share a common terminal number assignment.


ABSOLUTE MAXIMUM RATINGS at 25°C Free-Air Temperature

Output Voltage, V _{CE} 50 V
Output Voltage, V _{CE(sus)}
Logic Supply Voltage Range,
V _{DD} 4.5 V to 15 V
V _{DD} with Reference to V _{EE} 25 V
Emitter Supply Voltage, V _{EE} 20 V
Input Voltage Range,
V _{IN} 0.3 V to V _{DD} + 0.3 V
Continuous Output Current,
I _{OUT}
Package Power Dissipation,
P _D See Graph
Operating Temperature Range,
Operating Temperature Range, T _A
T _A

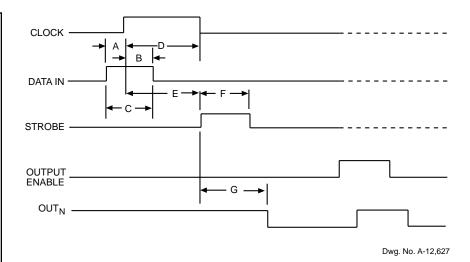

Caution: CMOS devices have input static protection but are susceptible to damage when exposed to extremely high static electrical charges.



5841 8-BIT SERIAL-INPUT, LATCHED DRIVERS

A5841SLW

Dwg. GP-022-4A



ELECTRICAL CHARACTERISTICS at T_A = +25°C, V_{DD} = 5 V, V_{EE} = 0 V (unless otherwise specified).

				Limits					
Characteristic	Symbol	Test Conditions	Min.	Max.	Unit				
Output Leakage Current	I _{CEX}	V _{OUT} = 50 V		50	μΑ				
		$V_{OUT} = 50 \text{ V}, T_{A} = +70^{\circ}\text{C}$		100	μΑ				
Collector-Emitter	V _{CE(SAT)}	I _{OUT} = 100 mA		1.1	V				
		I _{OUT} = 200 mA		1.3	V				
		$I_{OUT} = 350 \text{ mA}, V_{DD} = 7.0 \text{ V}$		1.6	V				
Collector-Emitter	V _{CE(sus)}	$I_{OUT} = 350 \text{ mA}, L = 2 \text{ mH}$	35		V				
Input Voltage	V _{IN(0)}			0.8	V				
	V _{IN(1)}	$V_{DD} = 12 \text{ V}$	10.5	_	V				
		$V_{DD} = 10 \text{ V}$	8.5	_	V				
		$V_{DD} = 5.0 \text{ V}$	3.5		V				
Input Resistance	R _{IN}	$V_{DD} = 12 \text{ V}$	50	_	kΩ				
		$V_{DD} = 10 \text{ V}$	50	_	kΩ				
		$V_{DD} = 5.0 \text{ V}$	50	_	kΩ				
Supply Current	I _{DD(ON)}	All Drivers ON, $V_{DD} = 12 \text{ V}$		16	mA				
		All Drivers ON, $V_{DD} = 10 \text{ V}$		14	mA				
		All Drivers ON, $V_{DD} = 5.0 \text{ V}$		8.0	mA				
	I _{DD(OFF)}	All Drivers OFF, V _{DD} = 12 V		2.9	mA				
		All Drivers OFF, V _{DD} = 10 V		2.5	mA				
		All Drivers OFF, V _{DD} = 5.0 V		1.6	mA				
Clamp Diode Leakage Current	I _R	V _R = 50 V	_	50	μА				
Clamp Diode Forward Voltage	V _F	I _F = 350 mA		2.0	V				

5841 8-BIT SERIAL-INPUT, LATCHED DRIVERS

TYPICAL INPUT CIRCUITS STROBE OUTPUT **ENABLE** Dwg. EP-010-3 V_{DD} **CLOCK** SERIAL DATA IN Dwg. EP-010-4A TYPICAL OUTPUT DRIVER OUT SUB Dwg. EP-021-8

TIMING CONDITIONS

 $(T_A = +25^{\circ}C, V_{DD} = 5.0 \text{ V}, \text{Logic Levels are } V_{DD} \text{ and Ground})$

A.	Minimum Data Active Time Before Clock Pulse (Data Set-Up Time)	75 ns
В.	Minimum Data Active Time After Clock Pulse	
	(Data Hold Time)	75 ns
C.	Minimum Data Pulse Width	150 ns
D.	Minimum Clock Pulse Width	150 ns
E.	Minimum Time Between Clock Activation and Strobe	300 ns
F.	Minimum Strobe Pulse Width	100 ns
G.	Typical Time Between Strobe Activation and	
	Output Transition	1.0 μ s

Serial Data present at the input is transferred to the shift register on the logic "0" to logic "1" transition of the CLOCK input pulse. On succeeding CLOCK pulses, the registers shift data information towards the SERIAL DATA OUTPUT. The SERIAL DATA must appear at the input prior to the rising edge of the CLOCK input waveform.

Information present at any register is transferred to its respective latch when the STROBE is high (serial-to-parallel conversion). The latches will continue to accept new data as long as the STROBE is held high. Applications where the latches are bypassed (STROBE tied high) will require that the ENABLE input be high during serial data entry.

When the ENABLE input is high, all of the output buffers are disabled (OFF) without affecting the information stored in the latches or shift register. With the ENABLE input low, the outputs are controlled by the state of the latches.

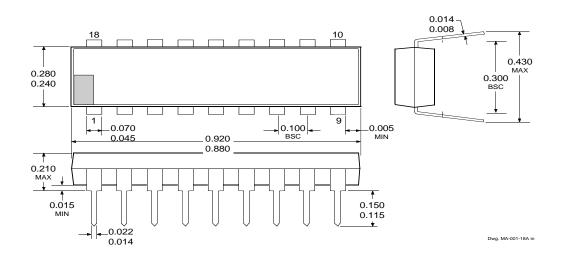
5841 8-BIT SERIAL-INPUT, LATCHED DRIVERS

TRUTH TABLE

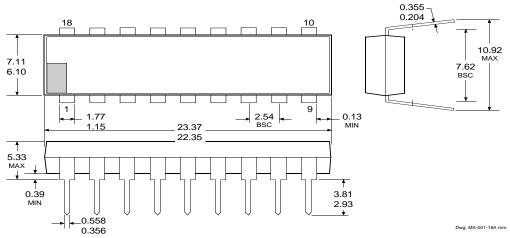
Serial		Shift Register Contents			Serial		Latch Contents						Output Contents					
Data Input	Clock Input	l	l ₂	l ₃	 I ₈	Data Output	Strobe Input	I ₁	l ₂	l ₃		l ₈	Output Enable	I ₁	l ₂	l ₃		l ₈
Н	7	Н	R ₁	R ₂	 R ₇	R ₇												
L	」	L	R ₁	R_2	 R ₇	R ₇												
Х	l	R ₁	R_2	R_3	 R ₈	R ₈												
		Х	Χ	Χ	 Х	Х	L	R ₁	R_2	R_3		R ₈						
		P ₁	P_2	P_3	 P ₈	P ₈	Н	P ₁	P ₂	P ₃		P ₈	L	P ₁	P ₂	P ₃		P ₈
					•			Х	X	Х		Χ	Н	Н	Н	Н		Н

L = Low Logic Level H = High Logic Level X = Irrelevant P = Present State R = Previous State

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.


Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

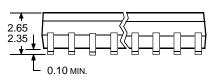
Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.


The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

UCN5841A

Dimensions in Inches (controlling dimensions)

Dimensions in Millimeters (for reference only)


- NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
 - 2. Lead spacing tolerance is non-cumulative.
 - 3. Lead thickness is measured at seating plane or below.

Dimensions in Inches (for reference only) 0.0125 0.0091 0.419 0.394 0.2992 0.2914 0.050 0.016 0.020 0.013 3 0.050 0° TO 8°**↓** 0.4469 0.0926 0.1043 0.0040 MIN. Dwg. MA-008-18A in **Dimensions in Millimeters** (controlling dimensions) 18 0.32

1.27 BSC

UCN5841LW

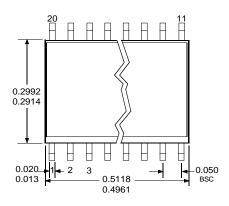
11.35

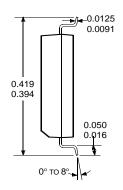
☐ ☐ _ 2 3

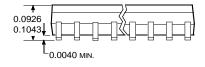
Dwg. MA-008-18A mm

0° то 8° ↓

10.65 10.00

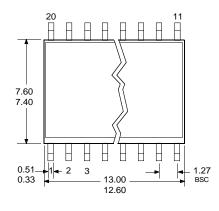

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

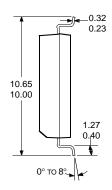

2. Lead spacing tolerance is non-cumulative.


7.60 7.40

A5841SLW

Dimensions in Inches (for reference only)





Dwg. MA-008-20 in

Dimensions in Millimeters (controlling dimensions)

- NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
 - 2. Lead spacing tolerance is non-cumulative.

