BiMOS II 32-BIT SERIAL-INPUT, LATCHED SOURCE DRIVERS WITH ACTIVE-DMOS PULL-DOWNS

ABSOLUTE MAXIMUM RATINGS

$$
\text { at } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
$$

$$
\text { Logic Supply Voltage, VDD } 15 \text { V }
$$

$$
\text { Driver Supply Voltage, } \mathrm{V}_{\mathrm{BB}} \text {.................. } 60 \mathrm{~V}
$$

Continuous Output Current,

$$
\text { Iout }-40 \mathrm{~mA} \text { to }+15 \mathrm{~mA}
$$ Input Voltage Range,

$$
\mathrm{V}_{\mathrm{IN}} \cdots \ldots \ldots \ldots . . .0 .3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}
$$

Package Power Dissipation, P_{D}(UCN5818AF)$3.5 \mathrm{~W}^{*}$
(UCN5818EPF) $2.3 \mathrm{~W} \dagger$
Operating Temperature Range,T_{A}
\qquad $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range,

* Derate at rate of $28 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ \dagger Derate at rate of $18 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
Caution: CMOS devices have input static protection but are susceptible to damage when exposed to extremely high static electrical charges.

Designed primarily for use with vacuum-fluorescent displays, the UCN5818AF and UCN5818EPF smart power BiMOS II drivers combine CMOS shift registers, data latches, and control circuitry, with bipolar highspeed sourcing outputs and DMOS active pull-down circuitry. The highspeed shift register and data latches allow direct interfacing with microprocessor LSI-based systems. A CMOS serial data output enables cascade connections in applications requiring additional drive lines. Both devices feature 60 V and -40 mA output ratings, allowing them to be used in many other peripheral power driver applications.

These smart power drivers have been designed with BiMOS II logic for improved data entry rates. With a 5 V supply, it will operate to at least 3.3 MHz . At 12 V , higher speeds are possible. Use of these devices with TTL may require the use of appropriate pull-up resistors to ensure an input logic high. All devices can be operated over the ambient temperature range of $20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The UCN5818AF is supplied in a 40 -pin plastic dual in-line package with $0.600^{\prime \prime}(15.24 \mathrm{~mm})$ row spacing. A copper lead frame, reduced supply current requirement, and low output saturation voltage permits operation with minimum junction temperature rise. The ' A ' package allows all 32 outputs to be operated at -25 mA continuously over the operating temperature range.

For high-density packaging applications, the UCN5818EPF is furnished in a 44-lead plastic chip carrier (quad pack) for surface mounting on solder lands with $0.050^{\prime \prime}(1.27 \mathrm{~mm})$ centers. The PLCC allows -25 mA continuous operation of all outputs simultaneously at ambient temperatures to $60^{\circ} \mathrm{C}$.
Similar deyices are available as the UCN5810AF/LWF (10 bits), UCN5811A (12 bits), and UCN5812AF/EPF (20 bits).

FEATURES

- 60 V Source Outputs
- High-Speed Source Drivers
- To 3.3 MHz Data Input Rate
- Low-Output Saturation Voltages

■ Active DMOS Pull-Downs

5818-F

32-BIT SERIAL-INPUT, LATCHED SOURCE DRIVERS
WITH ACTIVE-DMOS PULL-DOWNS

Dwg. GP-025B

FUNCTIONAL BLOCK DIAGRAM

TYPICAL INPUT CIRCUIT

Dwg. EP-010-5
TYPICAL OUTPUT DRIVER

Dwg. No. A-14,219

5818-F
 32-BIT SERIAL-INPUT, LATCHED SOURCE DRIVERS WITH ACTIVE-DMOS PULL-DOWNS

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BB}}=60 \mathrm{~V}$ unless otherwise noted.

Characteristic	Symbol	Test Conditions	Limits @ $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			Limits @ $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$			Units
			MIn.	Typ.	Max.	Min.	Typ.	Max.	
Output Leakage Current	$\mathrm{I}_{\text {CEX }}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	-	-5.0	-15	-	-5.0	-15	$\mu \mathrm{A}$
Output Voltage	$\mathrm{V}_{\text {OUT(1) }}$	IOUT $=-25 \mathrm{~mA}$	58	58.5	-	58	58.5	-	V
	V OUT(0)	$\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$	-	2.0	3.0	-	-	-	V
		$\mathrm{I}_{\text {OUT }}=2 \mathrm{~mA}$	-	-	-	-	2.0	3.5	V
Output Pull-Down Current	IOUT(0)	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ to V_{BB}	2.0	3.5	-	-	-	-	mA
		$\mathrm{V}_{\text {OUT }}=20 \mathrm{~V}$ to V_{BB}	-	-	-	8.0	13	-	mA
Input Voltage	$\mathrm{V}_{\mathrm{IN}(1)}$		3.5	-	5.3	10.5	-	12.3	V
	$\mathrm{V}_{\mathrm{IN}(0)}$		-0.3	-	+0.8	-0.3	-	+0.8	V
Input Current	$\mathrm{I}_{\mathrm{IN}(1)}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$	-	0.05	0.5	-	0.1	1.0	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{IN}(0)}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$	-	-0.05	-0.5	-	-0.1	-1.0	$\mu \mathrm{A}$
Serial Data Output Voltage	$\mathrm{V}_{\text {OUT }}(1)$	$\mathrm{l}_{\text {OUT }}=-200 \mu \mathrm{~A}$	4.5	4.7	-	11.7	11.8	-	V
	$\mathrm{V}_{\text {OUT(0) }}$	IOUT $=200 \mu \mathrm{~A}$	-	200	250	-	100	200	mV
Maximum Clock Frequency	$\mathrm{f}_{\mathrm{clk}}$		3.3*	-	-	-	-	-	MHz
Supply Current	$\mathrm{I}_{\mathrm{DD}(1)}$	All Outputs High	-	100	300	-	200	500	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{DD}(0)}$	All Outputs Low	-	100	300	-	200	500	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{BB}(1)}$	Outputs High, No Load	-	3.0	6.0	-	3.0	6.0	mA
	$\mathrm{I}_{\mathrm{BB}(0)}$	Outputs Low	-	10	100	-	10	100	$\mu \mathrm{A}$
Blanking to Output Delay	$\mathrm{t}_{\text {PHL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 50 \%$ to 50\%	-	2000	-	-	1000	-	ns
	$t_{\text {PLH }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 50 \%$ to 50%	-	1000	-	-	850	-	ns
Output Fall Time	t_{f}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 90 \%$ to 10%	-	1450	-	-	650	-	ns
Output Rise Time	t_{r}	$C_{L}=30 \mathrm{pF}, 10 \%$ to 90%	-	650	-	-	700	-	ns

Negative current is defined as coming out of (sourcing) the specified device terminal.

* Operation at a clock frequency greater than the specified minimum value is possible but not warranteed.

Dwg. No. A-12,649A

TIMING REQUIREMENTS

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\right.$, Logic Levels are V_{DD} and Ground)
A. Minimum Data Active Time Before Clock Pulse
(Data Set-Up Time)
75 ns
B. Minimum Data Active Time After Clock Pulse
(Data Hold Time)
75 ns
C. Minimum Data Pulse Width . 150 ns
D. Minimum Clock Pulse Width. 150 ns
E. Minimum Time Between Clock Activation and Strobe 300 ns
F. Minimum Strobe Pulse Width . 100 ns
G. Typical Time Between Strobe Activation and

Output Transistion
500 ns
Timing is representative of a 3.3 MHz clock. Higher speeds may be attainable with increased supply voltage; operation at high temperatures will reduce the specified maximum clock frequency.

Serial Data present at the input is transferred to the shift register on the logic " 0 " to logic " 1 " transition of the CLOCK input pulse. On succeeding CLOCK pulses, the registers shift data information towards the SERIAL DATA OUTPUT. The SERIAL DATA must appear at the input prior to the rising edge of the CLOCK input waveform.

Information present at any register is transferred to the respective latch when the STROBE is high (serial-to-parallel conversion). The latches will continue to accept new data as long as the STROBE is held high. Applications where the latches are bypassed (STROBE tied high) will require that the BLANKING input be high during serial data entry.

When the BLANKING input is high, the output source drivers are disabled (OFF); the DMOS sink drivers are ON, the information stored in the latches is not affected by the BLANKING input. With the BLANKING input low, the outputs are controlled by the state of their respective latches.

TRUTH TABLE

L = Low Logic Level $\quad \mathrm{H}=$ High Logic Level $\quad \mathrm{X}=$ Irrelevant $\quad \mathrm{P}=$ Present State $\quad \mathrm{R}=$ Previous State

UCN5818AF

Dimensions in Inches
(controlling dimensions)

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
2. Lead spacing tolerance is non-cumulative.
3. Lead thickness is measured at seating plane or below.
4. Supplied in standard sticks/tubes of 9 devices.

UCN5818EPF
Dimensions in Inches
(controlling dimensions)

Dimensions in Millimeters
(for reference only)

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
2. Lead spacing tolerance is non-cumulative.
3. Supplied in standard sticks/tubes of 27 devices or add "TR" to part number for tape and reel.

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

POWER
 INTERFACE DRIVERS

Function	Output Ratings*		Part Number ${ }^{\dagger}$
SERIAL-INPUT LATCHED DRIVERS			
8-Bit (saturated drivers)	-120 mA	$50 \mathrm{~V} \ddagger$	5895
8-Bit	350 mA	50 V	5821
8-Bit	350 mA	80 V	5822
8-Bit	350 mA	$50 \mathrm{~V} \ddagger$	5841
8-Bit	350 mA	$80 \mathrm{~V} \ddagger$	5842
8-Bit (constant-current LED driver)	75 mA	17 V	6275
8-Bit (constant-current LED driver)	120 mA	24 V	6277
8 -Bit (DMOS drivers)	250 mA	50 V	6595
8-Bit (DMOS drivers)	350 mA	$50 \mathrm{~V} \ddagger$	6A595
8-Bit (DMOS drivers)	100 mA	50 V	6B595
10-Bit (active pull-downs)	-25 mA	60 V	5810-F and 6810
12-Bit (active pull-downs)	-25mA	60 V	5811
16-Bit (constant-current LED driver)	75 mA	17 V	6276
20-Bit (active pull-downs)	-25 mA	60 V	5812-F and 6812
32-Bit (active pull-downs)	-25 mA	60 V	5818-F and 6818
32-Bit	100 mA	30 V	5833
32-Bit (saturated drivers)	100 mA	40 V	5832
PARALLEL-INPUT LATCHED DRIVERS			
4-Bit	350 mA	$50 \mathrm{~V} \ddagger$	5800
8-Bit	-25 mA	60 V	5815
8-Bit	350 mA	$50 \mathrm{~V} \ddagger$	5801
8-Bit (DMOS drivers)	100 mA	50 V	6B273
8-Bit (DMOS drivers)	250 mA	50 V	6273
SPECIAL-PURPOSE DEVICES			
Unipolar Stepper Motor Translator/Driver	1.25 A	$50 \mathrm{~V} \ddagger$	5804
Addressable 8-Bit Decoder/DMOS Driver	250 mA	50 V	6259
Addressable 8-Bit Decoder/DMOS Driver	350 mA	$50 \mathrm{~V} \ddagger$	6A259
Addressable 8-Bit Decoder/DMOS Driver	100 mA	50 V	6B259
Addressable 28-Line Decoder/Driver	450 mA	30 V	6817

[^0]
[^0]: * Current is maximum specified test condition, voltage is maximum rating. See specification for sustaining voltage limits. Negative current is defined as coming out of (sourcing) the output.
 \dagger Complete part number includes additional characters to indicate operating temperature range and package style.
 \ddagger Internal transient-suppression diodes included for inductive-load protection.

