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A31315 SINGLE DIE SENSOR ERROR FUNCTION –
HOW TO USE

INTRODUCTION
The 3D magnetic sensing devices offered by Allegro 
MicroSystems can be used in a wide range of applications 
where mechanical motion (linear or rotational) can be 
expressed by a changing magnetic angle. To estimate or 
simulate the performance for all applications of 3D devices 
is complicated. Which errors in the datasheet can be used? 
When they are valid? Can the angle error be used in the 
datasheet for a linear position application? What happens 
with the performance if the temperature range is within 
-40°C to +150°C or if the magnetic field is different than the 
test conditions specified? 

For this reason, Allegro MicroSystems created the A31315 
Sensor Error function in MATLAB. This error function takes 
into account the magnetic field and ambient temperature in 
order to apply appropriate sensor error and provide the user 
with application-specific behavior of the device. The output 
of the function gives a Monte Carlo based distribution of the 
magnetic field with added sensor errors.

SENSOR ERROR FUNCTION DATA
This error function uses characterization data from a limited 
number of sensors  over temperature (-40°C to +150°C 
in 10°C steps). The lifetime drift was characterized using 
environmental stresses defined in an AEC-Q100 qualifica-
tion. The measurements were performed  separately for 
“XY” and “XZ” as well as for “Single Die” and “Dual Die” 
configurations. With this data, it is possible to calculate all 
the different sensor errors, which are needed to simulate the 
sensor performance.

SENSOR ERRORS
The following sensor error sources are considered in the 
function. Note that the communication interface was not 
taken into account.

Offset Error
The offset error is an offset of the signal and is measured in 
gauss. This kind of error will have the highest impact if the 
magnetic field itself is small. The higher the magnetic field, 
the less the impact of the offset error.
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Figure 1: Example Offset Error

Sensitivity Error
The sensitivity error is a change in sensitivity compared to 
its intended sensitivity and is measured in percent. The field 
with a sensitivity error looks like it is scaled up or down. 
Since the sensitivity error is measured in percent, the impact 
on performance is not related to the amplitude of applied 
magnetic field.
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Figure 2: Example Sensitivity Error

Channel Sensitivity Mismatch Error
Sensitivity mismatch is the deviation of each channel 
from the average sensitivity of the two selected channels.
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Figure 3: Example Channel Sensitivity Mismatch Error

Channel Orthogonality Error
Orthogonality error is the degree to which the two selected 
channels are not orthogonal. Normally, the phase difference 
should be 90°, but due to the orthogonality error, this is not 
the case.
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Figure 4: Example Channel Orthogonality Error

Temperature Drift
Temperature drift is in this case a change in ambient tem-
perature from 20°C, and the temperature drift for an error 
source is therefore zero at 20°C. If the temperature changes 
from 20°C, the sensor error sources will drift relative to the 
applied temperature. 

Temperature drift of error sources may be the sole con-
sideration in the case where calibration is employed, e.g. 
linearization, at end of line. Factory calibration is normally 
performed at room temperature (20°C) and will eliminate (in 
large part) the effect of absolute individual error sources at 
this temperature, making temperature drift of error sources 
the most relevant to analyze for the application.

Temperature drift is valid for all sensor error sources 
explained previously.

Lifetime Drifts 
At Allegro MicroSystems, the lifetime of a sensor is defined 
by the environmental stress tests performed during an 
AEC-Q100 qualification. During qualification, the sensor will 
experience numerous temperature cycles and many hours of 
operation at extreme temperatures. Sensor error sources are 
measured before and after environmental stress, and the dif-
ference between these measurements is the lifetime drift for 
each error source. This approach is taken for all sensor error 
sources explained previously.

Error Function Input Parameters
The sensor error function has some parameters to allow it to 
be used in a wide range of use cases.

function [B_Err_ChnA, B_Err_ChnB] = A31315_
BwithError(cordic, B_chnA, B_chnB, Temperature, LinUsed, 
n_samples, errorOverLife
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cordic
The parameter cordic selects which of the two magnetic 
fields should be used, either ‘XY’ or ‘XZ’. Other orientations 
are currently not supported by this sensor and function. If 
this parameter is set to ‘XZ’ it means that B_chnA will be 
interpreted as channel ‘X’, and B_chnB will be interpreted 
as channel ‘Z’ of the sensor. Depending on the set value for 
cordic, different sensor errors will be used. This is because 
each orientation has different error source contributions.

B_chnA and B_chnB
The parameters B_chnA an B_chnB are the magnetic field 
values in gauss without sensor errors. The field must be given 
in a vector, e.g. field over rotation or movement. 

In Figure 5, Bx has a size of [360 1] and has 360 values for 
the angle rotation from 0° to 360°. In this specific example, 
the maximum value in this matrix has an amplitude of ±200 
gauss.
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Figure 5: Example of magnetic field for a rotation

Temperature Error
The parameter Temperature is the temperature in °C. This 
parameter is needed since the sensor errors are temperature 
dependent. 

For example, the offset error may be worse at around 100°C, 
while the sensitivity error may be worse at –40°C. The 
magnetic input field will not be temperature-corrected. This 
needs to be done before calling this function and will be 
shown in an example later.

LinUsed
If the output data will be used with a linearization or end-of-
line calibration, the parameter LinUsed should be set to ‘1’. 
The function will then only consider the sensor error drift, 

outgoing from 20°C. The output of the function does not 
exactly match the performance with linearization applied 
and is only an approximation. The function is not doing the 
linearization itself.

LinUsed = false:

Error over temperature will be used

LinUsed = true:

Sensor temperature drift will be used

n_samples
The parameter n_samples is the number of samples which 
should be created for the Monte Carlo analysis. Set to 
‘1000’, the function will provide 1000 values with sensor 
errors. It is recommended to use a value like ‘1000’ or higher 
to get a good distribution of sensor errors. These values then 
can be used afterwards to calculate e.g. 3-sigma values and 
look at the distribution of the channel or angle errors.

errorOverLife
The parameter errorOverLife can be set to ‘1’ to add lifetime 
drift as defined by an AEC-Q100 qualification. If set to ‘0’, 
only temperature errors and drifts will be considered.

ERROR FUNCTION OUTPUT VALUES
The function returns the magnetic fields with added errors: 
B_Err_ChnA and B_Err_ChnB. For each value of the input, the 
function will return n_samples calculated values. 

In Figure 5, a Bx and Bz with a size of [360 1] is used. After 
using the sensor error function, the output of B_Err_ChnA 
has a size of [1000 360]. For each initial value, there are now 
1000 sample values with added sensor errors. The result can 
be seen in Figure 6. Instead of just one line for each magnetic 
field, there are now 1000, providing a distribution of the sen-
sor error performance.
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Figure 6: Example Output Of Error Function

It is important to note, that the result is not representative 
of n_samples individual sensors. Each calculated value is not 
based on the previous value/error. Therefore, the result from 
this function provides the distribution of errors but no single 
simulated sensor errors.

HOW TO USE
Procedure
1. Get your magnetic fields from a …

A. Simulation

B. Calculation

C. Measurement

2. Correct the magnetic field regarding the desired tem-
perature and magnet temperature coefficient

3. Use the sensor error function to add sensor errors to the  
signal

4. Process the data

A. Calculate the angle

B. Calculate the angle error

C. Calculate mean/sigma lines 

5. Plot the result

MATLAB Code and Explanation
This section will guide through the procedure described 
above

Generate Data
As an example, create a perfect sine and cosine signal for an 
‘XY’ configuration with an amplitude of 300 G. This would be 
comparable to an end shaft application as shown in Figure 7.

Figure 7: Example for an End-of-Shaft application

% create a perfect sine/cosine 
% with an amplitude of 300G
Amp_G = 300; % amplitude in Gauss
steps = 360; % # of data points for rotation
B_chnX = cos(linspace(0,2*pi,steps))’ .* Amp_G;
B_chnY = sin(linspace(0,2*pi,steps))’ .* Amp_G;

The next step is to create the values for the X axis. This is 
nearly the same as the first step:

x_values = linspace(0,360,steps);

The result shown in Figure 8 is comparable to the following 
simulation parameters:

• Round magnet OD = 7 mm

• Round magnet Height = 3 mm

• Magnetization = diametral 

• Br@20°C = 0.405T (Ferrite)

• Simulation temperature = 20°C

• Crystal Air Gap = 2.1 mm

(magnet surface to active Hall element)
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Figure 8: Calculated perfect simulation data

In a next step, the angle for the data above will be calculated 
(angle shown in Figure 9).

% calc angle from Bx/By signals
perfect_ang = mod(atan2d(B_chnY, B_chnX),360);
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Figure 9: Calculated angle from perfect simulation data

Correct field regarding temperature
The next step would be to correct the magnetic fields regard-
ing the temperature. For this example, define temperature 
range as –40°C to 150°C and assume that the magnetic field 
in Figure 8 is at 20°C. The magnet temperature coefficient 
will be –0.19%/°C in this example, which is comparable to 
a typical ferrite magnet. This value is related to the magnet 
material and can be found in the datasheet of the magnet.

% Temperature correction
SimTemp = 20;      % °C temperature for original data
Temp = -40:10:150; % °C temperature range in 10°C steps
magnetTc = -0.19;  % %/°C

% create empty array with size of the expected result
[Bx_overTemp, By_overTemp] = ...
deal(zeros(numel(Temp), numel(B_chnX)));

for t_idx = 1:length(Temp) % for all temperatures
  % calc the new field for the temperatue and magnet Tc
    Bx_overTemp(t_idx,:) = B_chnX .* ((100 - ...
(SimTemp-Temp(t_idx))*magnetTc)/100);
    By_overTemp(t_idx,:) = B_chnY .* ((100 - ...
(SimTemp-Temp(t_idx))*magnetTc)/100); 
End
The result of the temperature correction can be seen in Figure 10.
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Magnetic Fields After Temperature Correction

Figure 10: Temperature corrected magnetic field

Using the Error Function
The next step is actually using the A31315 error function. To 
do this, some missing parameters must be defined:

cordic = ‘XY’;     % use function for XY orientation
LinUsed = false;   % no linearization afterwards 
n_samples = 1000;  % 1000 samples should be calculated
LifeError = false; % no lifetime errors

After defining the parameters, the function can be used for 
each temperature. The result will be stored in Bx_Err and 
By_Err.

% add sensor errors for each temperature
for t_idx = 1:length(Temp)
    [Bx_Err(t_idx,:,:), By_Err(t_idx,:,:)] = ...
A31315_BwithError(...
cordic, Bx_overTemp(t_idx,:), ...
By_overTemp(t_idx,:), Temp(t_idx), LinUsed, ...
n_samples, LifeError);
end

The function provides in this case 1000 values for each tem-
perature and position (Figure 11). It is recommended to limit 
the number of lines plotted to avoid slowdowns, e.g. only 
plot the first 50 lines.
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Figure 11: Temperature corrected magnetic field with added sensor errors

Calculate Angle Error
The next step is to calculate the angle error. Therefore, the 
angles for each temperature, position, and samples are 
needed. Afterwards, the initial angle without errors will be 
subtracted (Figure 12).

% calculate angle with sensor errors 
Ang_wErr = mod(atan2d(By_Err, Bx_Err), 360);

% calculate angle error
for t_idx = 1:length(Temp)
    for s_idx = 1:n_samples
        Ang_Err(t_idx, s_idx,:) = ...
wrapTo180(squeeze(Ang_wErr(t_idx, s_idx,:)) ...
- perfect_ang);
    end
end
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Figure 12: Angle error due to simulated sensor errors

Adding mean and sigma lines
This step is already optional, but since this is a Monte Carlo 
based simulation, the mean and sigma lines are a good way 

to check the result and overall performance. The mean and 
sigma values will be calculated over all temperatures and 
samples, but individually for each position (Figure 13).

% define the factor for sigma line
Sigma = 3; % e.g. 3 = 3-Sigma

% calculate mean and sigma values
Ang_Err_mean = squeeze(mean(Ang_Err, [1 2]));
Ang_Err_sigma = Sigma * squeeze(std(Ang_Err, 0, [1 2]));
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Figure 13: Angle error with calculated mean and sigma lines

Linearization
Though this document does not show the user how to linear-
ize a sensor, the sensor error function can still be used.  For 
that case, linearization coefficients must be calculated for the 
raw magnetic signals at 20°C. Then the parameter ‘LinUsed’ 
nmust be set to ‘true’ for the error function. After calculating 
all the values, the initial calculated linearization coefficients 
must be applied on the result from the error function. 

For information on how to perform a linearization with a 
microcontroller, please see the application note AN296160 
on the Allegro MicroSystems website.

CONCLUSION 
Datasheet specifications do not always lend themselves easily 
to statistical modeling or reflect the dependency of each error 
source across the operating temperature range. Some error 
sources peak in value at low temperatures and others peak at 
high temperature. The ultimate performance of the sensor is 
the superposition of various error sources, and the error func-
tion described in this document helps the user estimate how 
the sensor will perform in their application.
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APPENDIX: FULL MATLAB LIVESCRIPT CODE (WITH FIGURES)
Create Test Data
close all;
clear; clc;

% create a perfect sine/cosine – can be replaced with simulation/mapping data 
% with an amplitude of 300G
Amp_G = 300; % in Gauss
steps = 360; % # of data points for rotation

B_chnX = cos(linspace(0,2*pi,steps))’ .* Amp_G;
B_chnY = sin(linspace(0,2*pi,steps))’ .* Amp_G;
x_values = linspace(0,360,steps);

xlim_range = [0 360];
xticks_val = 0:45:360;

figure
hold on; grid on;
plot(x_values, B_chnX);
plot(x_values, B_chnY);
title(‘perfect sine/cosine’);
xlabel(‘set angle [steps]’);
ylabel(‘flux density [G]’);
xlim(xlim_range); xticks(0:45:360);
legend(‘Bx = cosine’, ‘By = sine’, ‘location’, ‘best’);

% calc angle from Bx/By signals
perfect_ang = mod(atan2d(B_chnY, B_chnX),360);

figure
nexttile
% plot perfect angle
hold on; grid on;
plot(perfect_ang,perfect_ang);
xlim(xlim_range); xticks(xticks_val);
ylim(xlim_range); yticks(xticks_val);
title(‘ARCTAN(Bx,By) - angle’);
xlabel(‘set angle [°]’);
ylabel(‘calculated angle [°]’);
legend(‘angle’, ‘location’, ‘best’);

Temperature Correction
% Settings Temperature correction
SimTemp = 20; % °C temperature for original data
Temp = -40:10:150; % °C temperature range in 10°C steps
magnetTc = -0.19; % %/°C

% create empty array with size of the expected result
[Bx_overTemp,By_overTemp] = deal(zeros(numel(Temp), numel(B_chnX)));

for t_idx = 1:length(Temp) % for all temperatures
  % calc the new field for the temperatue and magnet Tc
    Bx_overTemp(t_idx,:) = B_chnX .* ((100 - (SimTemp-Temp(t_idx))*magnetTc)/100);
    By_overTemp(t_idx,:) = B_chnY .* ((100 - (SimTemp-Temp(t_idx))*magnetTc)/100); 
end

figure
hold on; grid on;
plot(perfect_ang, Bx_overTemp);
plot(perfect_ang, By_overTemp);
title(‘Magnetic Fields After Temperature Correction’);
xlabel(‘set angle [°]’);
ylabel(‘flux density [G]’);
xlim(xlim_range); xticks(0:45:360);
legend(‘Bx over T’, ‘By over T’, ‘location’, ‘best’);
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Calculate Errors
cordic = ‘XY’;      % use function for XY orientation
LinUsed = false;    % no linearization will be used afterwards
n_samples = 1000;   % 1000 samples should be calculated
LifeError = false;  % no lifetime errors

% add sensor errors for each temperature
for t_idx = 1:length(Temp)
    [Bx_Err(t_idx,:,:), By_Err(t_idx,:,:)] = A31315_BwithError(cordic, Bx_overTemp(t_idx,:), By_overTemp(t_idx,:), Temp(t_idx), LinUsed, n_samples, 
LifeError);
end

figure
hold on; grid on;
for t_idx = 1:length(Temp)
    plot(perfect_ang, squeeze(Bx_Err(t_idx,1:50,:)));
    plot(perfect_ang, squeeze(By_Err(t_idx,1:50,:)));
end
title(‘Magnetic Fields with added Sensor Errors’);
xlabel(‘set angle [°]’);
ylabel(‘flux density [G]’);
xlim(xlim_range); xticks(0:45:360);
legend(‘Bx with error’, ‘By with error’, ‘location’, ‘best’);

Calculate Angle Error
% calculate angle with sensor errors
Ang_wErr = mod(atan2d(By_Err, Bx_Err), 360);

% calculate angle error
for t_idx = 1:length(Temp)
    for s_idx = 1:n_samples
        Ang_Err(t_idx, s_idx,:) = wrapTo180(squeeze(Ang_wErr(t_idx, s_idx,:)) - perfect_ang);
    end
end

figure
hold on; grid on;
for t_idx = 1:length(Temp)
    plot(perfect_ang, squeeze(Ang_wErr(t_idx,1:50,:)));
end
title(‘Angles with Sensor Errors’);
xlabel(‘set angle [°]’);
ylabel(‘angle with error [°]’);
xlim(xlim_range);xticks([0:45:360]);

figure
hold on; grid on;
for t_idx = 1:length(Temp)
    plot(perfect_ang, squeeze(Ang_Err(t_idx,1:50,:)));
end
title(‘Angle Error due to Sensor Error’);
xlabel(‘set angle [°]’);
ylabel(‘angle error [°]’);
xlim(xlim_range); xticks(0:45:360);
ylim([-2.5 2.5])

Calculation & Adding Mean/3-Sigma Lines
% define the factor for sigma line
Sigma = 3; % e.g. 3 = 3-Sigma

%calculate mean and sigma values
Ang_Err_mean = squeeze(mean(Ang_Err, [1 2]));
Ang_Err_sigma = Sigma*squeeze(std(Ang_Err, 0, [1 2]));

figure
hold on; grid on;
for t_idx = 1:length(Temp)
    plot(perfect_ang, squeeze(Ang_Err(t_idx,1:50,:)));
end
h1=plot(perfect_ang, Ang_Err_mean,’-k’,’LineWidth’,2);
h2=plot(perfect_ang, Ang_Err_mean+Ang_Err_sigma,’--k’,’LineWidth’,2);
h3=plot(perfect_ang, Ang_Err_mean-Ang_Err_sigma,’--k’,’LineWidth’,2);
title(‘Angle Error due to Sensor Error’);
xlabel(‘set angle [°]’);
ylabel(‘angle error [°]’);
xlim(xlim_range); xticks(0:45:360);
ylim([-2.5 2.5])
legend([h1 h2 h3], ‘Mean Error’, [‘+’ num2str(Sigma) ‘-Sigma’], [‘-’ num2str(Sigma) ‘-Sigma’], ‘location’, ‘best’)
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