

with SPI, I²C Interfaces, and Advanced Low-Power Management

FEATURES AND BENEFITS

- Flexible operating modes
 - Can measure input in any one, two, or three axes
 - 15-bit angle output from any selectable two-axis plane
- Low root-mean-square (RMS) angle noise for high system resolution
- SPI and I²C interfaces for easy system integration
 - Up to 10 MHz serial peripheral interface (SPI)
 - Up to 1 MHz inter-integrated circuit (I²C)
- Ideal for battery-powered, low-voltage applications
 - 2.65 to 3.6 V analog supply operation
 - 1.8 to 3.6 V digital supply operation
 - Low-leakage sleep ICC
 - Low-power duty cycle mode options for additional power savings
- Flexible multifunction pin for interrupt and sample-start functionality
 - Interrupt pin provides digital output when user-defined threshold is exceeded
- On-chip EEPROM for storing factory and customerconfigured settings
- -40°C to 125°C operation
- AEC-Q100, Grade 1 automotive qualified

APPLICATIONS

- Valve position
- Shifter
- Human-machine interface (HMI)

DESCRIPTION

The A31331 three-axis Hall-effect sensor integrated circuit (IC) is a flexible magnetic sensor capable of measuring the applied flux density in any one, two, or three axes, as well as calculating the angle in up to any of two user-defined planes. The A31331 comes in a standard field configuration of ± 600 G. Additionally, the device is available preconfigured for SPI or I²C. The magnetic temperature coefficient is customer-programmable to support various magnet properties.

For ease of use, the A31331 supports two different digital interfaces: four-wire SPI or I²C. For high-speed applications, the SPI can operate at up to 10 MHz, and the I²C interface can operate at up to 1 MHz. The I²C address can be set by external resistors (16 unique addresses), or it can be programmed into EEPROM via I²C (127 unique addresses), allowing for multiple devices on the same bus.

Power management of the A31331 is highly configurable, allowing for system-level optimization of supply current and performance. Low-leakage sleep current makes the A31331 well-suited for portable, battery-operated applications.

The A31331 is supplied in an eight-pin thin-shrink small-outline package (TSSOP). The package is lead (Pb) free with 100% matte tin leadframe plating.

PACKAGE: 8-Pin TSSOP (LE)

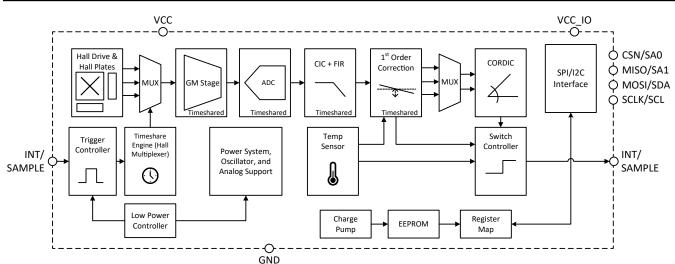
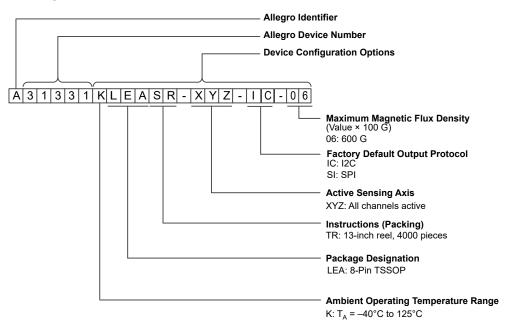


Figure 1: Functional Block Diagram


with SPI, I²C Interfaces, and Advanced Low-Power Management

SELECTION GUIDE

Part Number	Default Interface	Supported Field Range (G) (Typ.) [1][2]	Packing ^[3]
A31331KLEATR-XYZ-IC-06	I ² C	±600	4000 pieces per 12 inch reel
A31331KLEATR-XYZ-SI-06	SPI	±600	4000 pieces per 13-inch reel

^{[1] 1} gauss (G) = 0.1 millitesla (mT).

NAMING SPECIFICATION

^[2] For alternate field range options, contact Allegro.

^[3] Contact Allegro™ for alternate packing options.

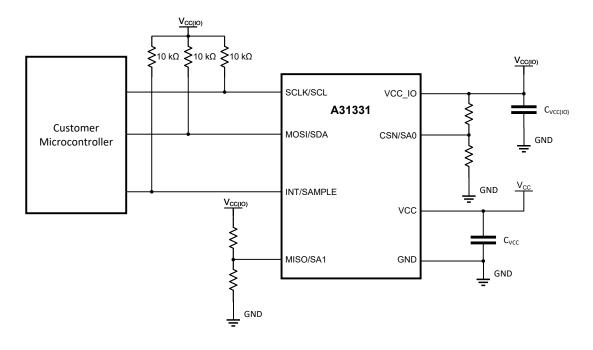
with SPI, I²C Interfaces, and Advanced Low-Power Management

ABSOLUTE MAXIMUM RATINGS

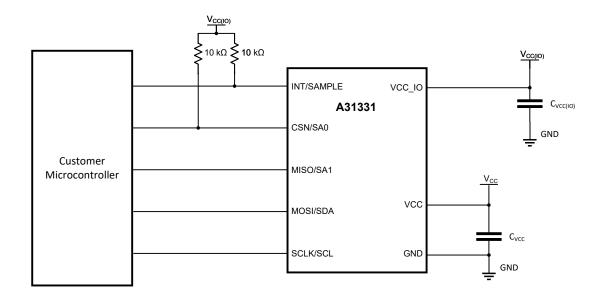
Characteristic	Symbol	Notes	Rating	Unit
Forward Supply Voltage	V _{CC}		3.6	V
Reverse Supply Voltage	V _{RCC}		-0.5	V
Forward IO Supply Voltage	V _{CC(IO)}		V _{CC}	V
Reverse IO Supply Voltage	V _{RCC(IO)}		-0.5	V
All Other Pins Forward Voltage	V _{IN}	Digital IO Pins, SDA, SCL, SA0, SA1, SCLK, MISO,	V _{CC(IO)}	V
All Other Pins Reverse Voltage	V _R	MOSI, CSN	-0.5	V
Operating Ambient Temperature	T _A	Range K	-40 to 125	°C
Maximum Junction Temperature	T _{J(MAX)}		165	°C
Storage Temperature [1]	T _{stg}		-65 to 170	°C
EEPROM Write Count [2]	_	Number of times EEPROM can be written	100	writes

^[1] Stress beyond the absolute maximum rating might result in permanent device damage. Exposure to absolute maximum rating conditions for extended periods of time might affect device reliability.

THERMAL CHARACTERISTICS [1]


Characteristic	Symbol	Test Conditions		Unit
Package Thermal Resistance [2]	$R_{ heta JA}$	On four-layer printed circuit board (PCB) based on JEDEC standard	145	°C/W

^[1] Thermal characteristics might require derating at maximum conditions.



^[2] EEPROM writes are not supported at temperatures greater than 85°C.

^[2] Additional thermal information is available on the Allegro website.

(a) I2C Interface

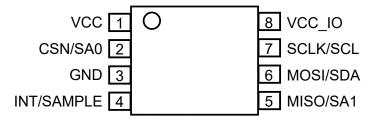

(b) SPI Interface

Figure 2: Typical Application Circuits

with SPI, I²C Interfaces, and Advanced Low-Power Management

PINOUT DIAGRAM AND TERMINAL LIST

Package LE, 8-Pin TSSOP Pinout Diagram

Terminal List Table

Number	Name	Function
1	VCC	Power supply input. Bypass VCC to GND with a 0.1 µF capacitor.
2	CSN/SA0	CSN: SPI chip select, active low. SA0: I ² C address select 0. To select the device address, connect a resistive divider to SA0. For more information about addressing, see the Application Information section.
3	GND	Ground signal terminal.
4	INT/ SAMPLE	INT: Interrupt output. For more information about the interrupt function, see the Application Information section. SAMPLE: Sample trigger Input. For more information about the sample function, see the Application Information section.
		If this functionality is not used and is disabled, it is recommended to tie this pin to ground.
5	MISO/SA1	MISO (controller-in peripheral-out): SPI output SA1: I ² C address select 1. To select the device address, connect a resistive divider to SA1. For more information about addressing, see the Application Information section.
6	MOSI/SDA	MOSI (controller-out peripheral-in): SPI input. SDA: I ² C serial data input/output. Open-drain.
7	SCLK/SCL	SCLK: SPI serial clock input. SCL: I ² C serial clock input.
8	VCC_IO	Voltage reference for digital input/output (IO) pins.

with SPI, I²C Interfaces, and Advanced Low-Power Management

ELECTRICAL CHARACTERISTICS: Valid at T_A = 25°C, V_{CC} = V_{CC IO} = 3 V, C_{BYPASS} = 0.1 μF, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
ELECTRICAL CHARACTERISTI	cs			`		
Complex Valtage		Typical operation	2.65	3	3.6	V
Supply Voltage	V _{CC}	EEPROM programming [1]	2.8	_	3.5	V
Supply Voltage Ramp ^[2]	V _{CC_RAMP}	Ramp rate from 0 to 3.3 V	0.1	_	10000	μs
Digital Supply Voltage	V _{CC_IO}	$V_{CC_IO} \le V_{CC}$	1.7	_	V _{cc}	V
	I _{CC(ACTIVE)}	Active state	_	3.8	4.75	mA
	I _{CC(INACTIVE)}	OP_MODE = 5, 6; inactive state	_	25	_	μA
	_	Average current in LPDCM; OP_MODE = 6, SLEEP_CNT = 7, CIC_BW_SEL_LPM = 6	_	25	_	μА
Supply Current [3]	I _{CC(LPDCM)}	Average current in LPDCM; OP_MODE = 6, SLEEP_CNT = 0, CIC_BW_SEL_LPM = 0	_	2	_	mA
	I _{CC(SLEEP)}	V _{CC} = 3 V, OP_MODE = 3, 4 [4]	_	2.5	_	μA
	I _{CC(EE)}	V _{CC} = V _{CC(MAX)} , EEPROM programming occurring [2]	_	6.2	_	mA
	I _{CC_IO}	Current consumption on VCC_IO	_	25	_	μA
Power-On Reset	V _{POR}	Minimum V _{CC} before turn-on	_	2.51	_	V
Power-On Delay Time [5]	t _{POD}	T_A = 25°C, after V_{CC} reaches $V_{CC(MIN)}$, BW select = 0	1	_	_	ms
EEPROM Write Delay Time	t _{EEP}	Wait after writing to EEPROM	_	50	-	ms
Linearity Sensitivity Error	E _{LIN}	Through full range of B _{IN}	_	±1.7	_	%
INT PIN CHARACTERISTICS						
INT Output On Resistance	R _{ON}		_	90	_	Ω
INT Input Current	I _{INT(IN)}	V _{IN} = 0 V to V _{CC}	-1	0	1	μA
INT Pull Up Resistance	R _{INT(PU)}		2.4	10	_	kΩ
INT Pull Up Voltage	V _{INT(PU)}		_	3	3.6	V
ADDRESS PIN CHARACTERISTICS [2]						
Address Value 0 Reference	V _{ADDR0}	SA0, SA1	_	0	0.1	× V _{CC_IO}
Address Value 1 Reference	V _{ADDR1}	SA0, SA1	0.23	0.33	0.43	× V _{CC_IO}
Address Value 2 Reference	V _{ADDR2}	SA0, SA1	0.57	0.67	0.77	× V _{CC_IO}
Address Value 3 Reference	V _{ADDR3}	SA0, SA1	0.9	1	_	× V _{CC_IO}
Address Pin Input Resistance	R _{ADD(IN)}	SA0, SA1	0.8	1	1.2	МΩ

^[1] Parameter is tested at wafer probe only.

^[2] Parameter not measured at final test. Determined by design and characterization.

^[3] I_{CC} varies based on lower-power duty cycle settings. For more information about power modes, see the Application Information section.

^[4] In OP_MODE = 4: I_{CC(SLEEP)} occurs during the idle window. When a conversion is requested, the device draws the same current as I_{CC(ACTIVE)}. The average I_{CC} is dependent on the user-set sampling rate.

^[5] Minimum time to delay after power-on before initiating communications. The device does not respond to I²C or SPI inputs until after the power-on delay time, t_{POD}, which varies based on the bandwidth (BW) select code, where code 0 is the longest duration.

I²C INTERFACE CHARACTERISTICS [¹]: Valid at T_A = 25°C, V_{CC} = V_{CC_IO} = 3 V, C_{BYPASS} = 0.1 μF, R_{PU} = 10 kΩ, and I²C clock speed (FCLK) = 400 kHz, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Bus Free Time Between Stop and Start		OP_MODE = 0, 1, 2	1.3	_	_	μs
bus Free Time between Stop and Start	t _{BF}	OP_MODE = 5, 6	25	-	_	μs
Hold Time Start Condition	t _{STA(H)}		0.6	-	_	μs
Setup Time for Repeated Start Condition	t _{STA(S)}		0.6	-	_	μs
SCL Low Time	t _{LOW}		1.3	_	_	μs
SCL High Time	t _{HIGH}		0.6	_	_	μs
Data Setup Time	t _{DAT(S)}		100	_	_	ns
Data Hold Time	t _{DAT(H)}		0	_	900	ns
Setup Time for Stop Condition	t _{STO(S)}		0.6	_	_	μs
Logic Input Love Love (SDA SCI Dine)	V	I2C_THRESH_SEL = 0; 3 V-compatible mode	_	_	0.9	V
Logic Input Low Level (SDA, SCL Pins)	V _{I(L)}	I2C_THRESH_SEL = 1; 1.8 V-compatible mode	-	_	0.54	V
La sia la sat High Lasa L (ODA OOL Bira)	.,	I2C_THRESH_SEL = 0; 3 V-compatible mode	2.1	_	_	V
Logic Input High Level (SDA, SCL Pins)	V _{I(H)}	I2C_THRESH_SEL = 1; 1.8 V-compatible mode	1.26	_	_	V
Logic Input Current	I _{I2C(IN)}	$V_{IN} = 0 \text{ V to } V_{CC}, R_{PU} = 2.4 \text{ k}\Omega$	-1	0	1	μA
Output Voltage (SDA Pin)	V _{O(L)}	I _{LOAD} = 1.5 mA	_	_	0.36	V
Clock Frequency (SCL Pin)	f _{CLK}		_	400	1000	kHz
Output Fall Time (SDA Pin)	t _f	$R_{PU} = 2.4 \text{ k}\Omega, C_{BUS} = 100 \text{ pF}$	_	_	250	ns
I ² C Pull-Up Resistance	R _{I2C(PU)}		2.4	10	_	kΩ
I ² C Pull-Up Voltage	V _{I2C(PU)}		1.8	3	3.3	V
Total Capacitive Load for SDL and SDA Buses	C _{BUS}		_	_	100	pF

[1] I²C interface characteristics are not measured at final test. Determined by design and characterization.

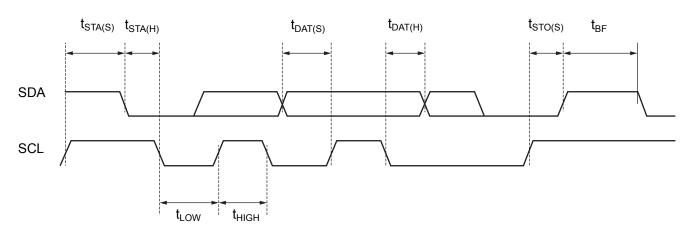


Figure 3: I²C Interface Timing Diagram

SPI INTERFACE CHARACTERISTICS: Valid at T _A = 25°	°C. Cpypage = 0.1 µF. unless otherwise noted
--	--

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
SPI INTERFACE SPECIFICATIONS						
SPI Packet Size	N _{SPI}	Number of bits per SPI transaction, with and without cyclic redundancy check (CRC)	16	_	20	bits
Digital Input High Voltage	V _{IH}	MOSI, SCLK, CSN pins	0.65	_	1	× V _{CC_IO}
Digital Input Low Voltage	V _{IL}	MOSI, SCLK, CSN pins	-	_	0.35	× V _{CC_IO}
SPI Output High Voltage	V _{OH}	MISO pins, C _L = 10 pF	-	_	_	V
SPI Output Low Voltage	V _{OL}	MISO pins, C _L = 10 pF	_	_	-	V
SPI Clock Frequency	f _{SPI}		0.1	_	10	MHz
SPI Duty Cycle	D _{fSCLK}	SPICLK _{DC}	40	-	60	%
SPI Frame Rate	t _{SPI}		5.8	-	588	kHz
Chip Select to First SCK Edge	t _{CS}	Time from CSN going low to SCLK falling edge	50	_	_	ns
Chin Coloct Idla Tima		OP_MODE = 0, 1, 2	425	_	_	ns
Chip Select Idle Time	t _{CS_IDLE}	OP_MODE = 5, 6	37.5	_	_	μs
Data Out Valid Time	t _{DAV}	Data output valid after SCLK falling edge	_	30	_	ns
MOSI Setup Time	t _{SU}	Input setup time before SCLK rising edge	25	_	-	ns
MOSI Hold Time	t _{HD}	Input hold time after SCLK rising edge	50	_	_	ns
MISO Off Time	t _{off}	Time from CSN going high to MISO tri-stating	_	45	_	ns
SCLK to CS Hold Time	t _{CHD}	Hold SCLK high time before CS rising edge	5	_	_	ns
Load Capacitance	C _L	Loading on digital output (MISO) pin, V _{CC_IO} = 3.3 V	_	_	10	pF

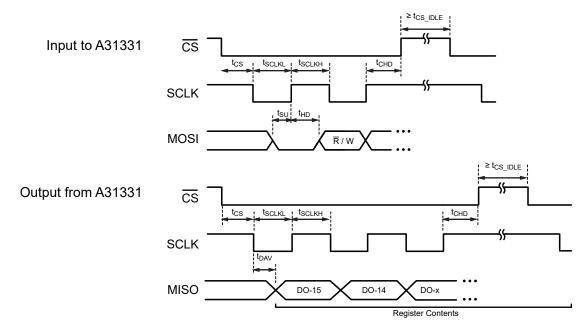


Figure 4: SPI Interface Timings: Input (Top) and Register Output (Bottom)

with SPI, I²C Interfaces, and Advanced Low-Power Management

A31331KLEA-XYZ-06 PERFORMANCE CHARACTERISTICS: Valid at V_{CC} = 3 V, and C_{BYPASS} = 0.1 μ F, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit [1]
NOMINAL PERFORMANCE						
Optimized Sensing Range	B _{IN}		_	±600	_	G
Sensitivity	SENS	T _A = 25°C	_	24.82	_	LSB/G
Sensitivity Temperature Coefficient	SENS _{TC}	-40°C < T _A < 125°C	_	0.04	_	%/°C
Zero-Field Offset Code	OFF	B _{IN} = 0 G, -40°C < T _A < 125°C	-	0	_	LSB
NOISE CHARACTERISTICS [2]						
DMC Naise V/V Channels [3]	N	BW select = 0	_	0.1	_	G
RMS Noise X/Y Channels [3]	N _{RMS(XY)}	BW select = 6	_	0.8	_	G
DMO Nation 7 Observed [3]		BW select = 0	_	0.052	_	G
RMS Noise Z Channel [3]	N _{RMS(Z)}	BW select = 6	_	0.414	_	G
RMS Angle Noise [3]	N _{RMS(θXY)}	BW select = 0, B _{IN} = 300 G	_	0.02	_	۰
ACCURACY PERFORMANCE						
Official Famous VIV Access		B _{IN} = 0 G, T _A = 25°C	-6	_	6	G
Offset Error X/Y Axes	E _{OFF(XY)}	B _{IN} = 0 G, -40°C < T _A < 125°C	-6	_	6	G
Official Famous 7 April	_	B _{IN} = 0 G, T _A = 25°C	-6	_	6	G
Offset Error Z Axis	E _{OFF(Z)}	B _{IN} = 0 G, -40°C < T _A < 125°C	-6	-	6	G
		T _A = 25°C	-2.5	-	2.5	%
Sensitivity Error X/Y Axes	E _{SENS(XY)}	25°C < T _A < 125°C	-4	-	4	%
		-40°C < T _A < 25°C	-5.2	_	5.2	%
		T _A = 25°C	-3.5	-	3.5	%
Sensitivity Error Z Axis	E _{SENS(Z)}	25°C < T _A < 125°C	-4	_	4	%
		-40°C < T _A < 25°C	-5.2	_	5.2	%
Sensitivity Mismatch Error	_	T _A = 25°C	-1.1	-	1.1	%
X Axis to Y Axis	E _{MATCH(XY)}	-40°C < T _A < 125°C	-1.1	-	1.1	%
Sensitivity Mismatch Error	_	T _A = 25°C	-3	-	3	%
X/Y Axes to Z Axis	E _{MATCH(XZ,YZ)}	-40°C < T _A < 125°C	-4	-	4	%
0.11		T _A = 25°C	-1.75	_	1.75	۰
Orthogonality Error, X-Y Plane	E _{ORTHO(XY)}	-40°C < T _A < 125°C	-2	-	2	۰
Angle Frank V V Dlene		B _{IN} ≥ 300 G, T _A = 25°C	-1.5	_	1.5	۰
Angle Error X-Y Plane	E _{ANG(XY)}	B _{IN} ≥ 300 G	-2	_	2	۰
An als Fare V 7 V 7 D 121		B _{IN} ≥ 300 G, T _A = 25°C	-2	_	2	۰
Angle Error X-Z, Y-Z Plane [3]	$E_{ANG(XZ,YZ)}$	B _{IN} ≥ 300 G	-2.5	-	2.5	۰

^{[1] 1} G (gauss) = 0.1 mT (millitesla)

^[2] RMS noise equivalent to 1 standard deviation (sigma) distribution.

^[3] Parameter not measured at final test. Determined by design and characterization.

with SPI, I²C Interfaces, and Advanced Low-Power Management

A31331KLEA-XYZ-06 PERFORMANCE CHARACTERISTICS (continued): Valid at V_{CC} = 3 V, and C_{BYPASS} = 0.1 μ F, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit [1]
DRIFT CHARACTERISTICS—TEMPERATURE						
Offset Drift X/Y Axes	D _{OFF,TEMP(XY)}	-40 °C < T_A < 125°C, relative to T_A = 25°C	-4	_	4	G
Offset Drift Z Axis	D _{OFF,TEMP(Z)}	-40 °C < T_A < 125°C, relative to T_A = 25°C	-4	_	4	G
Consistivity Drift VIV Avec	Б	25°C < T _A < 125°C, relative to T _A = 25°C	0.00	_	0.08	%/°C
Sensitivity Drift X/Y Axes	$D_{SENS,TEMP(XY)}$	-40°C < T _A < 25°C, relative to T _A = 25°C	-0.04	_	0.12	%/°C
Considiuita Duiti 7 Anio		25°C < T _A < 125°C, relative to T _A = 25°C	0.00	_	0.08	%/°C
Sensitivity Drift Z Axis	$D_{SENS,TEMP(Z)}$	-40°C < T _A < 25°C, relative to T _A = 25°C	-0.04	_	0.12	%/°C
Sensitivity Mismatch Error Drift X Axis to Y Axis	D _{MATCH,TEMP(XY)}	-40°C < T _A < 125°C, relative to T _A = 25°C	-1.5	_	1.5	%
Sensitivity Mismatch Error Drift X/Y Axes to Z Axis	D _{MATCH,TEMP(XZ,YZ)}	-40 °C < T_A < 125°C, relative to T_A = 25°C	-3.5	_	3.5	%
Orthogonality Error Drift, X-Y Plane	D _{ORTHO,TEMP(XY)}	-40°C < T _A < 125°C, relative to T _A = 25°C	-1.5	_	1.5	۰
Angle Error Drift, X-Y Plane	D _{ANG,TEMP(XY)}	-40° C < T _A < 125°C, relative to T _A = 25°C.	-1.1	_	1.1	o
Angle Error Drift, X-Z, Y-Z Plane [3]	D _{ANG,TEMP(XZ,YZ)}	-40 °C < T _A < 125°C, relative to T _A = 25°C, B _{IN} \ge 300 G	-1.5	_	1.5	0

^{[1] 1} G (gauss) = 0.1 mT (millitesla)

^[2] Lifetime Drift Characteristics will be based on worst-case error or drift seen during device qualification.

^[3] Parameter not measured at final test. Determined by design and characterization.

with SPI, I²C Interfaces, and Advanced Low-Power Management

A31331KLEA-XYZ-06 PERFORMANCE CHARACTERISTICS (continued): Valid at V_{CC} = 3 V, and C_{BYPASS} = 0.1 μ F, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit [1]
DRIFT CHARACTERISTICS—TEMPI	RATURE AND I	LIFETIME [2]				
Offset Drift X/Y Axes	D _{OFF,LIFE(XY)}	-40°C < T _A < 125°C, Relative to T _A = 25°C pre-stress conditions	-3	-	3	G
Offset Drift Z Axis	D _{OFF,LIFE(Z)}	-40°C < T _A < 125°C, Relative to T _A = 25°C pre-stress conditions	-2	-	2	G
Considiuity Drift V/V Avec	5	25°C < T _A < 125°C, Relative to T _A = 25°C pre-stress conditions	0.00	_	0.08	%/°C
Sensitivity Drift X/Y Axes	D _{SENS,LIFE(XY)}	-40 °C < T_A < 25°C, Relative to T_A = 25°C pre-stress conditions	-0.04	_	0.12	%/°C
	D	25°C < T _A < 125°C, Relative to T _A = 25°C pre-stress conditions	0.00	-	0.11	%/°C
Sensitivity Drift Z Axis	D _{SENS,LIFE(Z)}	-40 °C < T_A < 25°C, Relative to T_A = 25°C pre-stress conditions	-0.07	_	0.04	%/°C
Sensitivity Mismatch Error Drift X Axis to Y Axis	D _{MATCH,LIFE(XY)}	-40°C < T _A < 125°C, Relative to T _A = 25°C pre-stress conditions	-1.5	_	1.5	%
Sensitivity Mismatch Error Drift X/Y Axes to Z Axis	D _{MATCH,LIFE(XZ,YZ)}	-40 °C < T_A < 125°C, Relative to T_A = 25°C pre-stress conditions	-4.5	_	4.5	%
Orthogonality Error Drift, X-Y Plane	D _{ORTHO,LIFE(XY)}	-40 °C < T_A < 125°C, Relative to T_A = 25°C pre-stress conditions	-2.6	ı	2.6	۰
Angle Error Drift, X-Y Plane	D _{ANG,LIFE(XY)}	-40 °C < T_A < 125 °C, Relative to T_A = 25 °C pre-stress conditions, $B_{IN} \ge 300$ G	-1.6	-	1.6	٥
Angle Error Drift, X-Z, Y-Z Plane	D _{ANG,LIFE(XZ,YZ)}	-40 °C < T_A < 125°C, Relative to T_A = 25°C pre-stress conditions, $B_{IN} \ge 300$ G	-2.25	_	2.25	۰

^{[1] 1} G (gauss) = 0.1 mT (millitesla)

^[2] Lifetime drift characteristics are based on the worst-case error or drift observed during device AEC-Q100 Grade 1 quality stress testing.

APPLICATION INFORMATION

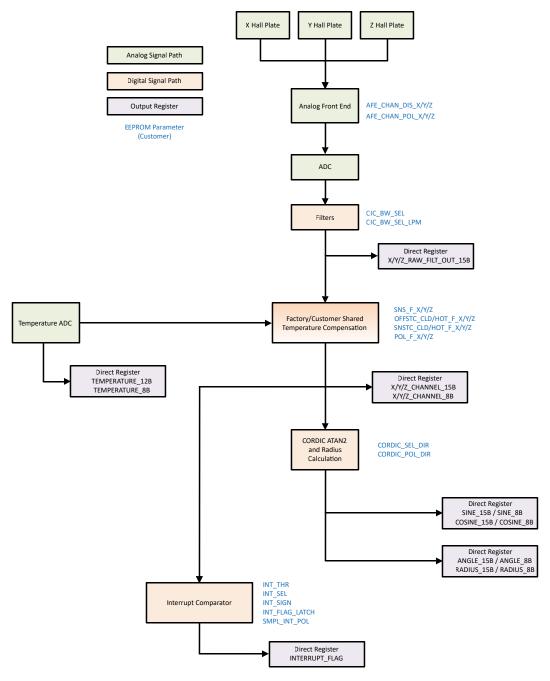


Figure 5: A31331 Signal Path

Magnetic Sensor(s) Output

The A31331 provides 8-bit and 15-bit digital output value options that are proportional to the magnetic field that is typically applied to any of the Hall elements as the X-, Y-, and Z-channels. Each channel is factory-trimmed for sensitivity and offset accuracy at room temperature, as well as with a target temperature compensation. For additional adjustment in application, the room sensitivity and sensitivity parameter and the offset temperature compensation parameter are accessible by the customer. This allows the A31331 to be used in both rotary and linear position applications in any mounting orientation relative to the sensing magnet and to provide high accuracy and matching as the device and magnetic system changes over temperature. Starting with the raw filter output, which can be read in registers X/Y/Z_RAW_FILT_OUT_15B, the single-dimension magnetic data is corrected through the following steps:

 $A = X/Y/Z_RAW_FILT_OUT_15B + Factory \ Offset \ Correction$ $B = A \times SENS_F_X/_Y/_Z \times -1^{(POL_F_X/Y/Z)}$

 $C = B + (OFFSTC_HOT/CLD_F_X/Y/Z \times Temperature)$

X/Y/Z_CHANNEL_15B = $C \times (SENSTC_HOT/CLD_F_X/Y/Z \times Temperature)$

The A31331 features an internal ATAN calculation on any two of the three user-selectable axes, X, Y, or Z. One of the channels is designated as the sine channel, and the other is designated as the cosine channel. This is performed with the indirect extended-space EEPROM parameter CORDIC_SEL or the volatile direct primary-space parameter CORDIC SEL DIR.

Table 1: CORDIC_SEL Decode

CORDIC_SEL	COSINE Channel	SINE Channel
0	X	Y
1	X	Z
2	Y	Z
3	Y	X
4	Z	Х
5	Z	Y
6	Х	Y
7	Х	Y

The sine channel is stored in the direct primary-space registers SIN_8B and SINE_15B. The cosine channel is stored in the direct primary-space registers COS_8B and COSINE_15B.

The angle between the magnetic vectors selected by the sine and cosine channels is taken as the ATAN, following the equation:

$$\theta = \tan^{-1} \frac{\sin \theta}{\cos \theta}$$

This angle can have an inverted polarity, decreasing code output with increasing input angle using the CORDIC POL parameter.

$$Angle_{Out} = \begin{cases} Angle_{in} & for CORDIC_POL = 0 \\ 360^{\circ} - Angle_{in} & for CORDIC_POL = 1 \end{cases}$$

Polarity can also be adjusted after power-on in the volatile direct primary-space register CORDIC_POL_DIR. The angle output is stored in the direct-space registers ANGLE_8B and ANGLE_15B.

While calculating the angle, digital processing also tracks the magnitude of the angle vector from the sine and cosine channels as the radius squared, following the equation:

$$radius^2 = cosine^2 + sine^2$$

This radius-squared value is stored in the direct-space registers RADIUS SQ 8B and RADIUS 15B.

Temperature Sensor Output

The A31331 provides a 12-bit digital output that is proportional to the junction temperature of the IC. Temperature can be calculated by:

$$Temp [°C] = \frac{TEMPERATURE_12B}{8.052} + 25$$

Special Function Pin INT/SAMPLE

The A31331 has a special function pin, INT/SAMPLE, that can be set as either an output as an interrupt pin, or an input as a sample request pin, depending on the configured power mode.

SAMPLE MODE

While in sample mode, the special function pin acts as an input and can trigger a request to start a new conversation of the magnetic signal. This allows the host/user to synchronize the acquisition of the magnetic data. The device remains in a standby mode (no data acquisition) until either the INT/SAMPLE pin is brought high or the direct register START_SAMPLE bit is set by the host. When this pin transitions to active (defined by SAMPLE_INT_POLARITY_DIR) or when the START_SAMPLE bit is set, a sample is triggered. The front end acquires data, the output registers are updated with the new data, the output registers are set, the STATUS_READY flag asserts, and the device returns to standby. This mode is particularly useful for signal-processing applications that are sensitive to time/speed considerations (such as feedback and control applications) where deterministic sam-

A31331

3D Linear Hall-Effect Sensor

with SPI, I²C Interfaces, and Advanced Low-Power Management

pling is critical for loop stability.

If the device is in the process of acquiring new data from an initial sample request, subsequent sample signals are ignored. Data registers are updated only once per INT/SAMPLE pin or START_SAMPLE write trigger. If DATA_LATCH = 1, the STATUS_READY bit must be cleared by the host writing a one to the bit once the reading of the stored data is complete, in order to allow a new acquisition to occur.

INTERRUPT MODE

When the pin is in interrupt mode, the special function pin is an output and is used to indicate when a certain internal threshold is surpassed. The threshold of interest is set by the direct-space INTERRUPT_SEL_DIR register or the indirect-space INT_SEL

parameter and is compared to the programmed threshold in INTERRUPT_THR_MSB/LSB_DIR in the direct space, loaded from INT_THR in the indirect space. When the selected threshold condition is met, the interrupt flag becomes set in the direct-space register INTERRUPT_FLAG and through the INT/SAMPLE pin. The INTERRUPT_FLAG direct-space bit always remains asserted once it is set and, after the interrupt condition is removed, it must be cleared by writing it to a 1. If the parameter INTERRUPT_FLAG_LATCH_DIR is set, the INT pin status also becomes latched until the INTERRUPT_FLAG bit is written to a 1. In low-power mode, the flag requires 20 μs to clear after the write.

Table 2: Interrupt Selection Options, THR set by INTERRUPT_THR_MSB/LSB_DIR in Direct Space

INTERRUPT_SEL_ DIR/INT_SEL	Condition (INTERRUPT_SIGN_DIR = 0)	Threshold Register	Description
0	THR > X	SIGNED	Threshold register is compared to the trimmed X output
1	THR > Y	SIGNED	Threshold register is compared to the trimmed Y output
2	THR > Z	SIGNED	Threshold register is compared to the trimmed Z output
3	THR > ABS(X)	UNSIGNED	Threshold register is compared to the absolute value of the trimmed X output
4	THR > ABS(Y)	UNSIGNED	Threshold register is compared to the absolute value of the trimmed Y output
5	THR > ABS(Z)	UNSIGNED	Threshold register is compared to the absolute value of the trimmed Z output
6	THR > TEMP	SIGNED	Threshold register is compared to the temperature output
7	THR > ANGLE	UNSIGNED	Threshold register is compared to the angle output
8	THR > RADIUS	UNSIGNED	Threshold register is compared to the radius output
9	THR = New Sample	_	No comparison; pin provides one 10 µs pulse that occurs when data is valid

Operation Modes

Power management on the A31331 is user-selectable and highly configurable, allowing for system-level optimization of current consumption and performance. The A31331 supports three different power modes: active mode, sleep mode, and low-power duty cycle mode (LPDCM), each with various subconfigurations using the special function pin INT/SAMPLE. The operating mode of the A31331 is determined by the value in the OP_MODE field, in direct-space address [0x32:0x33], bits [3:1], described in Table 3.

ACTIVE MODE

In active mode, the A31331 continuously updates the channel and angle outputs at an interval defined by the bandwidth selection. This mode requires the most power but provides output register updates at the highest frequency. In addition to the standard output of active mode, the OP_MODE register can be configured to set the device in active mode with the interrupt output enabled.

SLEEP MODE

In sleep mode, the A31331 enters a near powered-off state where it consumes the minimum amount of current. In this mode, the device continues to respond to I^2C or SPI commands, but it does not update magnetic or temperature data. In OP_MODE = 4, sleep mode with sample wake, the device operates similarly to full-sleep mode, but it also monitors the INT/SAMPLE pin or START_ SAMPLE bit for a trigger to start a conversion. This allows the host to set a conversion frequency to best balance power and response time in the system. Sleep mode is valuable in applications where the supply voltage cannot be disabled but minimal power consumption is required. The time it takes to exit sleep mode is equivalent to the power-on delay time (t_{POD}).

LOW-POWER DUTY CYCLE MODE (LPDCM)

In low-power duty cycle mode (LPDCM), the A31331 toggles between the active and inactive states, reducing overall current consumption. During LPDCM, the average $I_{\rm CC}$ for the A31331 varies based on the device configuration. The profile of $I_{\rm CC}$ as the A31331 toggles between active and inactive states during LPDCM is shown in Figure 6.

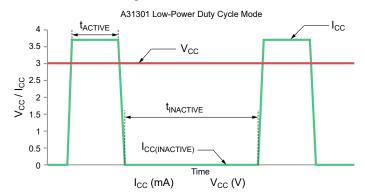


Figure 6: I_{CC} in Low-Power Duty Cycle Mode

The inactive time is determined by the value set in the SLEEP_CNT field, address [0x32:0x33], bits [6:4]. The A31331 offers eight discrete time frames, explained in Table 4.

Table 3: OP_MODE Control

Address	Bits	Value	Operating Mode	INT/SAMPLE Pin Function
		0	Active Mode	None
		1	Interrupt Output	
		2	Active Mode—Sample	Sample Input
Direct: 0x32:0x33		3	Sleep Mode	None
Direct. 0x32.0x33	3:1	4	Sleep Mode with Sample Wake	Sample/Wake Input
		5	Low-Power Duty Cycle Mode (LPDCM) with Interrupt	Interrupt Output
		6	Low-Power Duty Cycle Mode (LPDCM)	None
		7	Active Mode	None

Table 4: SLEEP_CNT Decode; LPDCM Inactive Time (t_{INACTIVE})

			CINACTIVE
Address	Bits	Value	t _{INACTIVE} (typ) (ms)
		0	0.68
		1	1.36
		2	6.82
Direct: 0x32:0x33	6:4	3	13.64
Direct. 0x32.0x33	0.4	4	68.18
		5	136.36
		6	681.82
		7	1363.64

The active time is determined by a combination of the value in the BW select field and the number of magnetic sensing channels enabled.

Bandwidth Selection

The A31331 has two parameters to control the device bandwidth and update rate in active mode and low-power mode: CIC_BW_SEL in indirect address 0x14, bits [2:0], controls filtering modes on the A31331 for the X, Y, and Z magnetic channels in active mode; and CIC_BW_SEL_LPM in indrect address 0x14, bits [5:3] controls the filtering modes of the channels in low-power

duty cycle mode. This setting impacts the resolution of the sampled magnetic data, device update rate, and overall bandwidth.

A lower value for CIC_BW_SEL/LPM offers increased measurement resolution with a longer measurement duration. A higher value for CIC_BW_SEL/LPM offers faster measurement time at the expense of reduced resolution. This setting is valuable for controlling active time during low-power duty cycle mode or increasing response time. Typical noise versus CIC_BW_SEL/LPM is listed in Table 5.

Update rate (typical) versus CIC_BW_SEL/LPM and active channels is shown in Table 5. The A31331 updates internally at a high bandwidth. However, throughput may be limited by the communication protocol clocking frequency at the application level.

Magnetic sensing channels on the A31331 may be enabled independently with the AFE_CHAN_DIS_X, AFE_CHAN_DIS_Y, and AFE_CHAN_DIS_Z bits in the indirect space, or the equivalent AFE_CHAN_DIS_X_DIR, AFE_CHAN_DIS_Y_DIR, and AFE_CHAN_DIS_Z_DIR in the direct space.

NOTE: When updating the CIC_BW_SEL or CIC_BW_SEL_LPM, the device must be reset for the change to correctly take effect.

Table 5: Bandwidth Select, Filtering Modes, and Input Referred Noise (600 G Device Only)

BW Select Value	Approximate Bandwidth (Hz)	Approximate Update Rate, 1 Channel (µs)	Approximate Update Rate, 2 Channels (µs)	Approximate Update Rate, 3 Channels (µs)	Z-Channel Noise (G)	X-/Y-Channel Noise (G)
0	195.5	1024	6156	9234	0.052	0.100
1	391	512	3084	4626	0.073	0.141
2	782	256	1548	2322	0.103	0.200
3	1564	128	780	1170	0.146	0.283
4	3128	64	396	594	0.207	0.400
5	6256	32	204	306	0.293	0.566
6	12512	16	108	162	0.414	0.800
7			Not Sup	ported		

INTERFACE INFORMATION

I²C Interface

I²C is a synchronous, two-wire serial communication protocol that provides a full-duplex interface between two or more devices. The bus specifies two logic signals:

- 1. Serial clock line (SCL) output by the controller.
- 2. Serial data line (SDA) output by either the controller or the peripheral.

The A31331 may only operate as a peripheral device. Therefore, it cannot initiate any transactions on the I²C bus.

Data Transmission and Timing Considerations

I²C communication comprises the following steps:

- 1. Start Condition: Defined by a negative edge of the SDA line, initiated by the controller, while SCL is high.
- 2. Address Cycle: 7-bit peripheral address, plus 1 bit to indicate write (0) or read (1), followed by an acknowledge bit.
- Data Cycles: Reading or writing 8 bits of data, followed by an acknowledge bit. This cycle can be repeated for multiple bytes of data transfer. The first data byte on a write could be the register address. For further information, see the sections that follow.
- 4. Stop Condition: Defined by a positive edge on the SDA line, while SCL is high.

Except to indicate the start or stop condition, SDA must remain stable while the clock signal is high. SDA may only change states while SCL is low. It is acceptable for a start or stop condition to occur at any time during the data transfer. The A31331 always responds to a read or write request by resetting the data transfer sequence.

The state of the Read/Write bit is set to 0 to indicate a write cycle and is set to 1 to indicate a read cycle.

The controller monitors for an acknowledge bit to confirm the peripheral device (A31331) is responding to the address byte. When the A31331 decodes the 7-bit peripheral address as valid, it responds by pulling SDA low during the ninth clock cycle.

When a data write is requested by the controller, the A31331 pulls SDA low during the clock cycle following the data byte to indicate that data receipt is successful.

After sending either an address byte or a data byte, the controller must release the SDA line before the ninth clock cycle, allowing the handshake process to occur.

I²C Write Cycle Overview

The write cycle to access registers on the A31331 comprises the following steps:

- 1. Controller initiates the start condition.
- 2. Controller sends the 7-bit peripheral address and the write bit (0).
- 3. Controller waits for acknowledgement (ACK) from A31331.
- 4. Controller sends the 8-bit register address.
- 5. Controller waits for ACK from A31331.
- 6. Controller sends the data from bits [15:8].
- 7. Controller waits for ACK from A31331.
- 8. Controller sends the data from bits [7:0].
- 9. Controller waits for ACK from A31331.
- 10. Controller initiates the stop condition.

The I²C write sequence is further illustrated in the timing diagram in Figure 7.

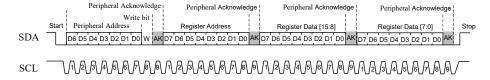


Figure 7: I²C Write Timing Diagram

Read Cycle Overview

The read cycle to access registers on A31331 comprises the following steps:

- 1. Controller initiates the start condition.
- 2. Controller sends the 7-bit peripheral address and the write bit (0).
- 3. Controller waits for ACK from A31331.
- 4. Controller sends 8-bit register address.
- 5. Controller waits for ACK from A31331.
- 6. Initiate a start condition; this time it is referred to as a restart condition.
- 7. Controller sends the 7-bit peripheral address and the read bit (1).
- 8. Controller waits for ACK from A31331.
- 9. Controller receives the data of bits [15:8].
- 10. Controller sends ACK to A31331.
- 11. Controller receives the data of bits [7:0].
- Controller sends negative acknowledgement (NACK) to A31331.
- 13. Controller initiates the stop condition

The I²C read sequence is further illustrated in the timing diagrams in Figure 8.

The timing diagram in Figure 8 shows the entire contents (bits [15:0]) of a single register location being transmitted. Optionally, the I²C Controller may choose to replace the NACK with an ACK instead, which allows the read sequence to continue. This case will result in the transfer of contents (bits [15:8]) from the following register, address + 1. The controller can then continue acknowledging, issue the NACK, or stop after any byte to stop receiving data.

NOTE: Only the initial register address is required for reads, allowing for faster data retrieval. However, this restricts data retrieval to sequential registers when using a single read command. When the controller provides a NACK bit and a stop bit, the A31331 stops sending data. If nonsequential registers are to be read, separate read commands must be sent.

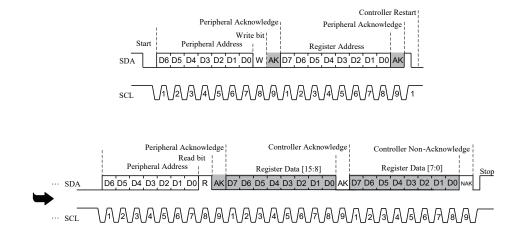


Figure 8: I²C Read Timing Diagram

I²C CRC Byte

To enable the A31331 cyclic redundancy check (CRC) feature, set the I2C_CRC_EN bit, indirect address 0x15, bit [18]. When enabled, the A31331 read transaction returns one extra byte, which corresponds to the CRC calculation of that read. The bytes of the I²C read sequence used for CRC calculation are:

- 1. 8-bit register address
- 2. 7-bit peripheral address + read bit (1'b1)
- 3. 2 data bytes (16 bits, MSB first)

The 8-bit-long code is generated using the CRC8-ATM (0x83) polynomial:

$$p(x) = x^8 + x^2 + x + 1$$

I²C Readback Modes

The A31331 supports three different readback modes over the I²C interface, including single, continuous, and loopback modes. These modes simplify the process of repeatedly polling the A31331 for magnetic X, Y, Z, and temperature data.

SINGLE MODE

In single mode, there is a single write or read command to any register. This is the default mode and is best suited for setting fields and reading static registers. If desired, this mode can be used to read data in a typical serial fashion, but fast or full-loop read modes are recommended for high-speed data retrieval. After each single read is complete, the controller must issue a NACK to complete the transaction.

CONTINUOUS MODE

Instead of issuing a NACK after a read request, the controller can continue to issue an ACK. When this occurs, the A31331 continues to transmit data from the next address, address + 2. This feature allows successive register reads without the need to send a read command for each register.

LOOPBACK MODE

Loopback mode on the A31331 is described in Table 6. The desired data to be returned serially in the loopback output register, I2C_LOOP_BACK_16B, can be enabled by setting the appropriate bit(s) for I2C_LOOPBACK_CH_SEL, direct address [0x34:0x35], bits [7:0]. In this mode, the desired data are loaded into the same read address sequentially. This allows continuous polling of a single register to obtain all of the necessary data. If a NACK is sent before the loopback sequence is complete, the loop restarts upon the next request.

Table 6: A31331 Looping Read Modes

I2C_LOOPBACK_CH_SEL	Enabled Data in Loop
0	X_CHANNEL_15B
1	Y_CHANNEL_15B
2	Z_CHANNEL_15B
3	TEMPERATURE_12B
4	SINE_15B
5	COSINE_15B
6	RADIUS_15B
7	ANGLE_15B

I²C Addressing

The different addresses available to the A31331 are outlined in Table 7. In the special case where AD0 and AD1 are both tied to VCC, the device responds to the peripheral address stored in register I2C_SLV_ADDR in indirect-space address 0x15 (bits [16:10]). From the factory, this is set to 111, with the bit following the address indicating a read or write per the I²C specification.

NOTE: Different values for the three most significant bits (MSBs) of the address bits (A6, A5, and A4) are available for factory programming if a conflict with other units occurs in the application design.

4-Bit Code from ADR1 Voltage on AD1, Voltage on AD0, **Peripheral Address Bits** and ADR0 Voltages **Peripheral Address** V_{A1} (× V_{CC_IO}) V_{A0} (× V_{CC_IO}) E2 **E**1 **E3** E0 A6 Α5 A0 Α4 А3 A2 Α1 0.33 0.67 O 0.33 0.33 0.67 O 0.33 0.67 0.67 0.33

Table 7: I²C Peripheral Address Decoding

SPI Protocol

The A31331 provides a full-duplex 4-pin SPI interface for each die. The sensor responds to commands received on the corresponding controller-out peripheral-in (MOSI), serial clock (SCLK), and chip-select (\overline{CS}) pins, and outputs data on the controller-in peripheral-out (MISO) pin. The A31331 supports SPI mode 3 (CPOL = 1, and CPHA = 1).

0.67

I2C_SLV_ADDR

SPI Interface Timing

The SPI interface operates in pure peripheral mode, with the controller governing the SCLK, MOSI, and $\overline{\text{CS}}$ lines. Clock frequencies up to 10 MHz are supported. Timings of the write and read cycles are shown in Figure 4.

SPI Message Frame Size

An SPI transaction is a minimum of 16 bits in length. An extended 20-bit SPI packet allows 4 bits of CRC to accompany every data packet. The 4-bit CRC is automatically generated and placed on the MISO line during clock pulses 17 through 20. The A31331 contains 16-bit primary-access registers that are byte-addressable to match the SPI frame size. To access the 32-bit EEPROM, an extended access scheme is implemented. This scheme consists of two 16-bit registers that contain the memory contents for a write,

two 16-bit registers that contain the memory contents for a read, and registers that contain the memory locations for the write, read, and execution control to begin and monitor the write/read.

Programmed to 111

at the factory

SPI Error Checking

The SPI CRC algorithm is based on the following polynomial, initialized with 0xF:

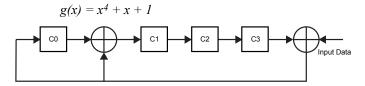


Figure 9: SPI CRC

For the A31331 to accept the CRC on the MOSI line, the EEPROM parameter, SPI_CRC_EN, must be set to 1. If the incoming SPI message is greater than 16 bits and SPI_CRC_EN = 0, the message is ignored.

When enabled, the 4-bit CRC is expected. If the CRC is incorrect, the SPI packet is discarded. The MISO packet on the next message is the previous read data.

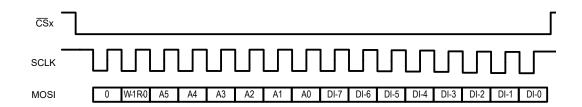


Figure 10: Sixteen-Bit SPI Message

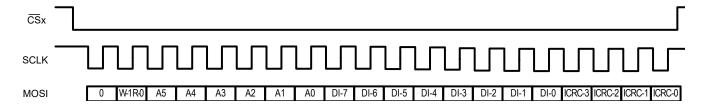


Figure 11: Twenty-Bit SPI Message

Write Cycle Overview

Write cycles consist of 1 synchronization (sync) bit (low), 1 read/write bit (R/W) asserted high, 6 address bits (corresponding to the primary serial register), 8 data bits, and 4 optional CRC bits. To write a full 16-bit serial register, two write commands are required (even and odd byte addresses). MOSI bits are clocked-in on the rising edge of the controller-generated SCLK signal. The complete SPI packet is latched on the rising edge of the controller-generated (CS) signal.

The simultaneous MISO signal output represents the contents of the corresponding die SPI read packet, including 16 data bits and 4 optional CRC bits. The data bits correspond to the register contents selected during the previous read command. If a previous read command was not issued (for instance, a write command), the MISO line transmits all zeroes as a return.

Read Cycle Overview

Read cycles have two stages: a read command, selecting a serial register address, followed by another SPI command; it is during this second SPI command that data from the selected register is transmitted from the part to the host. Both commands consist of a 1-bit sync (low), a 1-bit R/W asserted low for a read, 6 address bits identifying the target register, and 8 data bits (these

are immaterial because data is not being written), followed by 4 optional CRC bits.

In the first stage, as with the write command, the read command MOSI bits are clocked-in on the rising edge of the controller-generated SCLK signal, and data are latched on the rising edge of the $\overline{\text{CS}}$ signal. During the first read stage, the simultaneous MISO signal output is composed of either the contents of the SPI read data from a previous read command cycle, or the contents of the angle register if the previous command was a write.

In the second stage, the read command continues on the next falling edge of the controller-generated (\overline{CS}) signal. The MISO bits are the contents of the register selected during the first stage, read 16 bits at a time. The MISO bits transmit on the falling edges of the SCLK signal, such that the controller can sample them on the SCLK rising edges.

Because an SPI read command can transmit 16 data bits at one time, and the primary serial registers are built from one even and one odd byte, the entire 16-bit contents of one serial register can be transmitted with one SPI frame.

Examples of both an SPI write and an SPI read request using a 16-bit SPI message frame are shown in Figure 12.

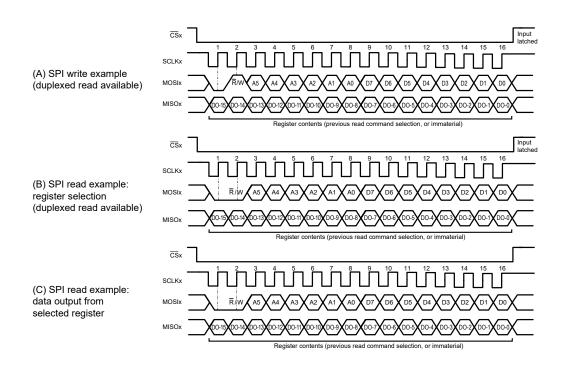


Figure 12: SPI Read and Write Pulse Sequences

EEPROM Margin Checking

The A31331 contains a test mode, known as EEPROM margining, to check the logic levels of the EEPROM bit cells. Due to nonidealities in transistors, current slowly leaks into or out of EEPROM cells and can, over time, cause small changes in the stored voltage level. During programming, variances in voltage levels of the charge pump can result in a variety of stored EEPROM cell voltages. If this value is marginally close to the threshold, the small drift over lifetime can cause this value to surpass the threshold. This results in a corrupted EEPROM value. Because this drift occurs slowly over time, if an issue arises, it might not appear for years. For this reason, it is important to perform margin testing (margining) to verify the internal voltage levels of EEPROM cells after programming and to ensure that issues do not occur in the future.

This test should be run after writing to the EEPROM to ensure the bit cell thresholds are within the specification for reliable EEPROM operation. To perform the test, set the volatile MARGIN_START bit. Once set, the device enters the test mode where all bit cells within the EEPROM array are checked. The EEPROM margining is selectable to check all logic 1 thresholds (can be disabled by MARGIN_NO_MAX), logic 0 thresholds (can be disabled by MARGIN_NO_MIN), or both thresholds.

Table 8: Margin Status Return Decoding

MARGIN_STATUS	Meaning
0	Reset condition (result from margin testing not available)
1	Pass: Failure not detected during margin testing
2	Fail: Failure detected during margin testing
3	Running: Margin test is still running

The EEPROM margin test spans 1 ms (typical). After the EEPROM margin test completes, the status can be read out via the MARGIN_STATUS bit in the volatile space. The best practice is to perform EEPROM margin checking after end-of-line programming.

MEMORY ACCESS

The A31331 uses a primary and extended memory structure. The device uses EEPROM to permanently store configuration parameters for operation. EEPROM is user-programmable and permanently stores operation parameter values or customer information. The operation parameters are downloaded to shadow (volatile) memory at power-up. Shadow fields are initially loaded from corresponding fields in EEPROM, but can be overwritten, either by performing an extended write to the shadow addresses, or by reprogramming the corresponding EEPROM fields and powercycling the IC. Use of shadow memory is substantially faster than accessing EEPROM. In situations where many parameters need to be tested quickly, shadow memory is recommended for trying parameter values before permanently programming them into EEPROM. The shadow memory registers have the same format as the EEPROM and are accessed at extended addresses 0x20 higher than the equivalent EEPROM address. Unused bits in the EEPROM do not exist in the related shadow register and return 0 when read. Shadow registers do not contain the ECC bits. The serial interface primary access registers can be read or written to without the customer access code. The mapping of bits from register addresses in EEPROM to their corresponding register addresses in shadow is shown in the EEPROM tables in the Indirect Extended Space section. The access register is used to unlock the device. The access code must be written to ACCESS KEY [15:0] one byte at a time. Once unlocked, EEPROM and shadow registers can be written.

Extended access is provided to additional memory space via the primary registers. This access includes the EEPROM, shadow registers, and registers for additional status and diagnostics. All extended registers are 32 bits wide.

Customer Access Modes

The device memory contains nonvolatile EEPROM and volatile registers that are accessible via the serial interface through SPI or I²C communication mode. The memory address space is divided into three areas: factory, customer, and general access.

Customer access is controlled by an access code shown in Table 9. The access codes contain 32 bits.

To send the access codes shown in Table 9, the user writes to the access register with four consecutive 8-bit writes.

When the customer access code is received, factory registers are addressable but are read-only.

Table 9: 32-bit Customer Access Code

	Byte 1	Byte 2	Byte 3	Byte 4
Customer (Read access to fact)	43	55	53	54

Read Transaction from EEPROM (or Shadow Memory)

To invoke an extended read access:

- Load the INDIRECT_RD_ADDR parameter with the target extended address. INDIRECT_RD_ADDR is the 8-bit extended address that determines which extended memory address is to be accessed.
- Invoke the extended access by writing the primary INDI-RECT_RD_STATUS register EXR bit with 1. The INDI-RECT_RD_ADDR address is then read, and the data is loaded into the INDIRECT_RD_DATA_MSB and INDI-RECT_RD_DATA_LSB registers.
- 3. Read the INDIRECT_RD_DATA_MSB and INDIRECT_ RD_DATA_LSB registers to obtain the extended data. Multiple packets are required to obtain all 32 bits.

The RDN bit in the INDIRECT_RD_STATUS register can be polled to determine if the read access is complete before reading the data. Shadow register reads complete in one system clock cycle after synchronization. Do not attempt to read the INDIRECT_RD_DATA_MSB or INDIRECT_RD_DATA_LSB register when read access is in progress. If the read access is potentially in progress, the data might change during serial access. Therefore, an attempt to read these registers when read access is in progress can result in inconsistent data. A data change during a serial read via the SPI interface can also produce an SPI CRC error.

For example, to read location 0x15 in the EEPROM:

- Write 0x15 to the lower 8 bits of INDIRECT_RD_ADDR (0x15 to address 0x0B).
- Write 0x80 to the upper 8 bits of INDIRECT_RD_STATUS to set the EXR bit (0x80 to address 0x0C).
- Read INDIRECT_RD_STATUS until bit 0 (RDN) is set (or until sufficient time elapses).
- Read INDIRECT_RD_DATA_MSB (upper 16 bits of read data).
- Read INDIRECT_RD_DATA_LSB (lower 16 bits of read data).

A31331

3D Linear Hall-Effect Sensor

with SPI, I²C Interfaces, and Advanced Low-Power Management

Write Transaction to EEPROM (or Shadow Memory)

An extended write access can be invoked as follows:

- Load the INDIRECT_WR_ADDR parameter with the target extended address.
- 2. Load the INDIRECT_WR_DATA_MSB and INDIRECT_WR_DATA_LSB registers with the data to be written to the target. Multiple writes are required to load all 32 bits of data.
- 3. Invoke the extended access by writing the primary INDI-RECT WR STATUS register EXW bit with 1.

The INDIRECT_WR_ADDR address is then written with the 32-bit INDIRECT_WR_DATA_MSB and INDIRECT_WR_DATA_LSB data. The WDN bit in the INDIRECT_WR_STATUS register can be polled to determine when the write completes.

Shadow Memory Read and Write Transactions

Read and write transactions for shadow memory are nearly identical to those for EEPROM: Instead of addressing to the EEPROM addresses, the shadow extended addresses must be addressed; these are located at an offset of 0x20 higher than the EEPROM.

Shared Factory and Customer Trim Registers

Register addresses [0x07:0x12] contain memory used to factory-trim the device for the highest sensing accuracy in any application where the input vectors match in amplitude. If the application requires additional end-of-line adjustments to the device trim, these registers can be adjusted by the customer.

NOTE: The customer must ensure the accuracy of the device after end-of-line programming.

Memory Access in Low-Power Modes

When in sleep mode or low-power duty cycle mode, OP_MODE = 3 through 6, read/write access is limited to critical registers. This helps conserve power. Only the subset of direct-space registers needed to use the part in typical operation is available. Writes are only possible to direct-space addresses [0x32:0x33] that contain device configuration parameters. For reads, direct-space addresses [0x12:0x2B] and [0x32:0x33] are available in the I²C interface, and [0x1C:0x2A] and [0x32:0x33] are available in the SPI interface. For more information about the contents of these registers, see the Memory Map section.

with SPI, I²C Interfaces, and Advanced Low-Power Management

MEMORY MAP

The A31331 uses a primary and extended memory structure designated as direct (primary) and indirect (extended) space.

Direct Primary Space

Table 10: Direct Memory Map

MSByte	LSByte	Register				MSI	Byte							LSI	Byte			
Address	Address	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0	0x1	NOP_REGISTER	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x2 to 0x8	0x3 to 0x9	INDIRECT_WRITE_ REGISTERS							Ind	lirect Wri	te Regist	ters						
0xA to 0x10	0xB to 0x11	INDIRECT_READ_ REGISTERS							Ind	irect Rea	ad Regis	ters						
0x12 to 0x1A	0x13 to 0x1B	I2C_ONLY_REGISTERS		I2C Only Registers														
0x1C to 0x30	0x1D to 0x31	OUTPUT_REGISTERS								Output F	Registers							
0x32	0x33	CONTROL_REGISTER_1							(Control F	Register	1						
0x34	0x35	I2C_LOOPBACK REGISTER							120	C Loopba	ck Regis	ster						
0x36	0x37	CONTROL_REGISTER_2							(Control F	Register 2	2						
0x38	0x39	CONTROL_REGISTER_3							(Control F	Register :	3						
0x3A	0x3B	CONTROL_REGISTER_4		Control Register 4														
0x3C	0x3D	RESERVED_REGISTER	Reserved Register															
0x3E	0x3F	ACCESS KEY_REGISTER	Access Key Register															

The direct register map is the main access point to the data of the device. During typical operation, the host requests data from the device by reading the direct register. The requested data is output/status data or volatile configuration parameters. Nonvolatile configuration of the device and certain volatile test features are accessible via the indirect write/read registers.

Table 11: NOP Register

MSByte	MSByte LSByte	Register Name				MSE	Byte			LSByte								
Address Address	Address		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0	0x1	VOLATILE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 12: Indirect Write Registers

MSByte	MSByte LSByte Address	Register				MSI	Byte			LSByte									
Address	dréss Addréss Name		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0x2	0x3	INDIRECT_WR_ADDRESS	0	0	0	0	0	0	0	0			IN	DIRECT_	WR_ADI	OR			
0x4	0x5	INDIRECT_WR_DATA_MSB			INE	IRECT_	WR_DAT	A_3			INDIRECT_WR_DATA_2								
0x6	0x7	INDIRECT_WR_DATA_LSB			INE	IRECT_	WR_DAT	A_1					IND	IRECT_\	WR_DAT	A_0			
0x8	0x9	INDIRECT_WR_STATUS	EXW 0 0 0 0 0 0 WIP 0 0 0 0 0 0								0	WDN							

INDIRECT_WR_ADDR (0x02:0x03 [7:0])

Address to be used for an extended write.

INDIRECT_WR_DATA_3 (0x04:0x05 [15:8])

Most significant 8 bits of data to be written to the extended space (bits [31:24]).

INDIRECT_WR_DATA_2 (0x04:0x05 [7:0])

Next 8 bits of data to be written to the extended space (bits [23:16]).

INDIRECT WR DATA 1 (0x06:0x07 [15:8])

Next 8 bits of data to be written to the extended space (bits [15:8]).

INDIRECT_WR_DATA_0 (0x06:0x07 [7:0])

Least-significant 8 bits of data to be written to the extended space (bits [7:0]).

EXW (0x08:0x09 [15])

Initiate extended write by writing with 1. Sets WIP. Clears WDN. Always reads back 0.

WIP (0x08:0x09 [8])

Extended write is in progress when 1.

WDN (0x08:0x09 [0])

Extended write is complete when 1.

Table 13: Indirect Read Registers

MSByte	MSByte LSByte	Register				MSI	Byte			LSByte										
Address	Address Name		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
0xA	0xB	INDIRECT_RD_ADDRESS	0	0	0	0	0	0	0	0	INDIRECT_RD_ADDR									
0xC	0xD	INDIRECT_RD_STATUS	EXR	0	0	0	0	0	0	RIP	0	0	0	0	0	0	0	RDN		
0xE	0xF	INDIRECT_RD_DATA_MSB		INDIRECT_RD_DATA_3									INI	DIRECT_	RD_DAT	A_2				
0x10	0x11	INDIRECT_RD_DATA_LSB			INE	DIRECT_	RD_DAT	A_1		-	INDIRECT_RD_DATA_0									

INDIRECT RD ADDR (0x0A:0x0B [7:0])

Address to be used for an extended read.

EXR (0x0C:0x0D [15])

Initiate extended read by writing with 1. Sets RIP. Clears RDN. Always reads back 0.

RIP (0x0C:0x0D [8])

Extended read is in progress when 1.

RDN (0x08:0x09 [0])

Extended read is complete when 1.

INDIRECT RD DATA 3 (0x0E:0x0F [15:8])

Most significant 8 bits of data returned from the extended space (bits [31:24]).

INDIRECT_RD_DATA_2 (0x0E:0x0F [7:0])

Next 8 bits of data returned from the extended space (bits [23:16]).

INDIRECT RD DATA 1 (0x10:0x11 [15:8])

Next 8 bits of data returned from the extended space (bits [15:8]).

INDIRECT RD_DATA_0 (0x10:0x11 [7:0])

Least-significant 8 bits of data returned from the extended space (bits [7:0]).

with SPI, I²C Interfaces, and Advanced Low-Power Management

Table 14: I²C Only Registers

MSByte	LSByte	Register				MSI	Byte				LSByte									
Address	Address	Name	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1									
0x12	0x13	I2C_LOOP_BACK		I2C_LOOP_BACK_16B																
0x14	0x15	I2C_X_Y_8B				Y_CHAN	NEL_8B							X_CHAN	INEL_8B					
0x16	0x17	I2C_T_Z_8B			Т	EMPERA	ATURE_8	В			Z_CHANNEL_8B									
0x18	0x19	I2C_ANGLE_RADIUSSQ_8B				ANGI	_E_8B							RADIUS	_SQ_8B					
0x1A	0x1B	I2C_SIN_COS_8B				SIN	_8B				cos	S_8B								
0x34	0x35	I2C_LOOPB_CONF	0 0 0 0 0 0 0 0 12C_LOOPBACK_CH_SEL																	

NOTE: The registers listed here are exclusively for use in I²C device modes. In SPI mode, these registers are to be considered "do not read," and any results read from these registers is considered invalid. The digital ports (I²C/SPI) differ in how they interface to the internal registers to accommodate different data speeds and other configurations. For SPI modes, see the SPI Protocol section.

I2C_LOOP_BACK_16B (0x12:0x13 [15:0])

This register provides the 16-bit result of the last channel read per the loopback configuration register. See the I2C_LOOPBACK_CH_SEL (0X34:0X35 [7:0]) description.

Y_CHANNEL_8B (0x14:0x15 [15:8])

This register provides a fast, partial, result of the Y-axis channel data. The upper 8 bits of the 15-bit register (Y_CHANNEL_15B) provides the user with the values of up to ± 127 counts for the channel data.

X_CHANNEL_8B (0x14:0x15 [7:0])

This register provides a fast, partial result of the X-axis channel data. The upper 8 bits of the 15-bit register (X_CHANNEL_15B) provides the user with the values of up to ± 127 counts for the channel data.

TEMPERATURE 8B (0x16:0x17 [15:8])

This register provides a fast, partial result of the temperature sensor output data. The upper 8 bits of the 12-bit register (TEMPERATURE 12B) are provided for the user.

Z CHANNEL 8B (0x16:0x17 [7:0])

This register provides a fast, partial result of the Z-axis channel data. The upper 8 bits of the 15-bit register (Z_CHANNEL_15B) provides the user with the values of up to ± 127 counts for the channel data.

ANGLE_8B (0x18:0x19 [15:8])

This register provides a fast, partial result of the angle output register. The upper 8-bits of unsigned data are stored here from the 15-bit unsigned register (ANGLE_15B). The angle register provides an output of 0 to 255 counts to represent either true angle (1.41176 degrees per LSB) or linear position (0.39215% per LSB).

RADIUS_SQ_8B (0x18:0x19 [7:0])

This register provides a fast, partial result of the magnitude output register. The upper 8 bits of unsigned data are stored here from the 15-bit unsigned register (RADIUS_15B). The radius-squared register provides a magnitude of sensed field, granting the user the capability of producing angle-vectors numerically without additional computational requirements for the host microcontroller.

SIN_8B (0x1A:0x1B [15:8])

This register provides a fast, signed output for the sine channel input to the angle calculation. The upper 8 bits of unsigned data is stored here from the 15-bit signed register (SINE 15B).

COS 8B (0x1A:0x1B [7:0])

This register provides a fast, signed output for the cosine channel input to the angle calculation. The upper 8 bits of unsigned data is stored here from the 15-bit signed register (COSINE 15B).

I2C LOOPBACK CH SEL (0x34:0x35 [7:0])

This register serves to configure the power-saving options of the A31331. Here, the operational mode (active, low-power duty-cycling, sleep) is configured, and any subsequent options pertaining to the configured mode are set.

with SPI, I²C Interfaces, and Advanced Low-Power Management

Table 15: Output Registers

MSByte	LSByte	Register				MSE	Byte							LSE	Byte			
Address	Address	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x1C	0x1D	TEMPERATURE	0	0	0	0			•		TI	EMPERA	TURE_1	2B		`		
0x1E	0x1F	X_CHANNEL	0							X_CI	HANNEL	_15B						
0x20	0x21	Y_CHANNEL	0							Y_CI	HANNEL	_15B						
0x22	0x23	Z_CHANNEL	0							Z_CI	HANNEL	_15B						
0x24	0x25	ANGLE	0	ANGLE_15B														
0x26	0x27	RADIUS	0							R/	ADIUS_1	5B						
0x28	0x29	SINE	0								SINE_15	3						
0x2A	0x2B	COSINE	0							C	OSINE_1	5B						
0x2C	0x2D	X_RAW_FILT_OUT	0							X_RAW	_FILT_O	UT_15B						
0x2E	0x2F	Y_RAW_FILT_OUT	0							Y_RAW	_FILT_O	UT_15B						
0x30	0x31	Z_RAW_FILT_OUT	0							Z_RAW	_FILT_O	UT_15B						

TEMPERATURE 12B (0x1C:0x1D [11:0])

This register holds the 12-bit signed temperature sensor output.

X CHANNEL 15B (0x1E:0x1F [14:0])

This register holds the 15-bit signed output of the X-axis sensor output.

Y CHANNEL 15B (0x20:0x21 [14:0])

This register holds the 15-bit signed output of the Y-axis sensor output.

Z_CHANNEL_15B (0x22:0x23 [14:0])

This register holds the 15-bit signed output of the Z-axis sensor output.

ANGLE 15B (0x24:0x25 [14:0])

This register holds the unsigned output of the calculated angle. When used as an angle, the register output is 0.0109863°/LSB. When used as a linear position output, each bit holds a value of 0.0030518%/LSB.

RADIUS_15B (0x26:0x27 [14:0])

This register provides a magnitude (squared) of the sensed field, granting the user the capability to produce angle vectors numerically without additional computational requirements for the host microcontroller.

SINE_15B (0x28:0x29 [14:0])

This register provides a signed output for the sine channel input to the angle calculation set by CORDIC_SEL.

COSINE 15B (0x2A:0x2B [14:0])

This register provides a signed output for the cosine channel input to the angle calculation set by CORDIC_SEL.

X RAW FILT OUT 15B (0x2C:0x2D [14:0])

This register provides the raw output of the X-channel before any trim is applied. This can be useful to debug issues with expected output in the X CHANNEL 15B output.

Y RAW FILT OUT 15B (0x2E:0x2F [14:0])

This register provides the raw output of the Y-channel before any trim is applied. This can be useful to debug issues with expected output in the Y CHANNEL 15B output.

Z RAW FILT OUT 15B (0x30:0x31 [14:0])

This register provides the raw output of the Z-channel before any trim is applied. This can be useful to debug issues with expected output in the Z CHANNEL 15B output.

with SPI, I²C Interfaces, and Advanced Low-Power Management

Table 16: Control Registers

MSByte	LSByte	Register Name				MSI	Byte							LS	Byte			
Addréss	Address	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x32	0x33	OP_MODE_CONF	0	0	0	START_SAMPLE	INTERRUPT_FLAG	STATUS_READY	0	0	0	S	LEEP_C	NT		OP_MOD	E	0
0x36	0x37	INT_THR_CONF_DIR	0	0	0	0	INTER	RRUPT_1	THR_MS	3_DIR			INTE	RRUPT_	THR_LS	B_DIR		
0x38	0x39	INT_XYZ_CONF_DIR	0	0	AFE_CHAN_DIS_Z_DIR	AFE_CHAN_DIS_Y_DIR	AFE_CHAN_DIS_X_DIR	POL_F_Z_DIR	POL_F_Y_DIR	POL_F_X_DIR	0	IN	TERRUI	ERRUPT_SEL_DIR	DIR	INTERRUPT_SIGN_DIR	INTERRUPT_FLAG_LATCH_DIR	SAMPLE_INT_POLARITY_DIR
0x3A	0x3B	CIC_CORDIC_CONF_DIR	0	0	0	0	0	CIC_B ¹	W_SEL_LP	M_DIR	0	CIC_	_BW_SE	L_DIR	CORDIC_POL_DIR	COF	RDIC_SEI	_DIR

START SAMPLE (0x32:0x33 [12])

If the STATUS_READY parameter is cleared, the START_SAM-PLE parameter triggers the start of an internal conversion. The device is in standby mode until this parameter is set or until the INT/SAMPLE pin is pulled to the active state.

INTERRUPT FLAG (0x32:0x33 [11])

This is a latched bit that asserts to 1 when an interrupt occurs. The interrupt functionality is set by INTERRUPT_SEL_DIR in the direct space or INT_SEL in the indirect space. This bit must be set to 0 by a write from the host.

STATUS_READY (0x32:0x33 [10])

This is a latched bit that indicates a new sample is ready after the START_SAMPLE bit is set to start a new conversion. This bit must be set to 0 by a write from the host.

SLEEP CNT (0x32:0x33 [6:4])

The SLEEP_CNT parameter controls the inactive time of the low-power duty cycle mode. For decode information, see the Operation Modes section.

OP MODE (0x32:0x33 [3:1])

OP_MODE sets the operation configuration of the A31331 with respect to power use. The different options are described in the Operation Modes section.

INTERRUPT THR MSB DIR (0x36:0x37 [11:8])

This parameter sets the MSBs of the programmable threshold for the interrupt functionality. For more information, see the Interrupt Mode description in the Special Function Pin INT/SAMPLE section.

INTERRUPT THR LSB DIR (0x36:0x37 [7:0])

This parameter sets the LSBs of the programmable threshold for the interrupt functionality. For more information, see the Interrupt Mode description in the Special Function Pin INT/SAMPLE section.

AFE_CHAN_DIS_Z_DIR (0x38:0x39 [13])

This Z-channel disable parameter is a direct-space copy of the AFE_CHAN_DIS_Z bit from indirect space. If the Z-channel is not used, this feature can be used to shut off the Z-channel to reduce power and processing time.

AFE CHAN DIS Y DIR (0x38:0x39 [12])

This Y-channel disable parameter is a direct-space copy of the AFE_CHAN_DIS_Y bit from indirect space. If the Y-channel is not used, this feature can be used to shut off the Y-channel to reduce power and processing time.

AFE CHAN DIS X DIR (0x38:0x39 [11])

This X-channel disable parameter is a direct-space copy of the AFE_CHAN_DIS_X bit from indirect space. If the X-channel is not used, this feature can be used to shut off the X channel to reduce power and processing time.

POL F Z DIR (0x38:0x39 [10])

This is a direct-space copy of the POL_F_Z bit from indirect space. This feature flips the polarity of the Z-channel output.

POL_F_Y_DIR (0x38:0x39 [9])

This is a direct-space copy of the POL_F_Y bit from indirect space. This feature flips the polarity of the Y-channel output.

POL_F_X_DIR (0x38:0x39 [8])

This is a direct-space copy of the POL_F_X bit from indirect space. This feature flips the polarity of the X-channel output.

INTERRUPT_SEL_DIR (0x38:0x39 [6:3])

This is a direct-space copy of the INT_SEL parameter from indirect space. This selects the signal to compare to the programmed threshold in INTERRUPT_THR_MSB/LSB_DIR, as shown in the table in the Interrupt Mode topic in the Special Function Pin INT/SAMPLE section.

INTERRUPT SIGN DIR (0x38:0x39 [2])

This is a direct-space copy of the INT_SIGN parameter from indirect space. This selects the sign of the comparison to the threshold to set the interrupt from signal less than the programmed threshold (0, default) to signal greater than the programmed threshold (1). For more information, see the Interrupt Mode topic in the Special Function Pin INT/SAMPLE section.

INTERRUPT FLAG LATCH DIR (0x38:0x39 [1])

This is a direct-space copy of the INT_FLAG_LATCH parameter from indirect space. This sets the latch assertion behavior of the INT/SAMPLE pin when the condition is removed. In the default, 0, case, the INT/SAMPLE pin output does not remain asserted. For more information, see the Interrupt Mode topic in the Special Function Pin INT/SAMPLE section.

SAMPLE_INT_POLARITY_DIR (0x38:0x39 [0])

This direct-space copy of SMPL_INT_POL controls the polarity of the special function bin: 0 (default) = active low; 1 = active high.

CORDIC_BW_SEL_LPM_DIR (0x3A:0x3B [10:8])

This direct-space copy of the CIC_BW_SEL_LPM parameter in indirect space is used to set the BW in low-power mode (OP_MODE = 3,4). The amount of time the part is awake making conversions for each active channel before returning to sleep is set by this parameter. For more information, see the Bandwidth Selection and Low-Power Duty Cycle Mode (LPDCM) sections.

CORDIC BW SEL DIR (0x3A:0x3B [6:4])

This is a direct-space copy of the CIC_BW_SEL parameter in indirect space. This sets the BW in active mode (OP_MODE = 0,1, or 2). For more information, see the Bandwidth Selection section.

CORDIC POL DIR (0x3A:0x3B [3])

This is a direct-space copy of the CORIC_POL parameter in indirect space. This sets the output to be increasing in code or decreasing in code for an increasing magnetic angle input. For more information, see the Magnetic Sensor(s) Output section.

CORDIC SEL DIR (0x3A:0x3B [2:0])

This is a direct-space copy of the CORIC_SEL parameter in indirect space. This sets the two channels used for the ATAN angle calculation. For more information, see the Magnetic Sensor(s) Output section.

Table 17: Reserved Register

MSByte Address	LSByte	Register Name				MSI	Byte							LSE	Byte			
Address	Address	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x3C	0x3D	RESERVED								RESE	RVED							

RESERVED (0x3C:0x3D [15:0])

This register is reserved for factory use. To maintain device functionality, leave this register as zero.

with SPI, I²C Interfaces, and Advanced Low-Power Management

Table 18: Access Register

MSByte	LSByte	Register				MSI	Byte							LSE	Byte			
Addréss	Address	Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x3E	0x3F	ACCESS		ACCESS_KEY														

ACCESS KEY (0x3E:0x3F [15:0])

Location for sending the access code to the device. For instructions, see the Memory Access section.

Indirect Extended Space

ECC * parameters contain ECC error flags in the event of a single- or multi-bit error being detected in a row.

UNUSED * parameters are empty space in the memory that have no function.

Table 19: EEPROM/Shadow Memory: ID Parameters

EEPROM	Shadow												bit															
Address	Address	31 to 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x0	N/A	ECC_0	FA	СТО	RY_IE	0_0			,	_DIE	LOC							_DIE	_LOC	;				EE	PRO	M_RI	EV	
0x1	N/A	ECC_1	FA	CTORY_ID_1 FACTORY_LOT											FAC	TORY	_WA	FER										

FACTORY_ID_0 (EEPROM: 0x00, Shadow: None [25:22])

Factory-use identification parameter.

Y DIE LOC (EEPROM: 0x00, Shadow: None [21:14])

Die location on wafer in Y-dimension.

X DIE LOC (EEPROM: 0x00, Shadow: None [13:6])

Die location on wafer in X-dimension.

EEPROM REV (EEPROM: 0x00, Shadow: None [5:0])

EEPROM revision.

FACTORY ID 1 (EEPROM: 0x01, Shadow: None [25:22])

Factory-use identification parameter.

FACTORY LOT (EEPROM: 0x01, Shadow: None [21:6])

Factory lot number.

FACTORY WAFER (EEPROM: 0x01, Shadow: None [5:0])

Factory wafer number in lot.

with SPI, I²C Interfaces, and Advanced Low-Power Management

Table 20: EEPROM/Shadow Memory: Trim Parameters

EEPROM	Shadow											bit																
Address	Address	31 to 26	25	24 2	3 22	2	1 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	6 5		4	3	2	1	0
0x7	0x27	ECC_7				UNI	USED_	07				POL_F_X	AFE_CHAN_DIS_X							SEN	S_F	x						
0x8	0x28	ECC_8				UNI	USED_	08				POL_F_Y	AFE_CHAN_DIS_Y							SEN	S_F	:_Y						
0x9	0x29	ECC_9		UNUSED_09								POL_F_Z	AFE_CHAN_DIS_Z							SEN	S_F	:_Z						
0xD	0x2D	ECC_D	UNU	NUSED_OD SENSTC_CL							LD_F	_X								OFF	ST	C_CL	D_F	_X				
0xE	0x2E	ECC_E	UNU	NUSED_0E SENSTC_CL							LD_F	_Y								OFF	ST	C_CL	D_F	_Y				
0xF	0x2F	ECC_F	UNU	JSED_0F				S	ENS	TC_C	LD_F	Z								OFF	ST	C_CL	D_F	_z				
0x10	0x30	ECC_10	UNL	JSED_10				S	ENS	тс_н	OT_F	_X								OFF	ST	C_HC	T_F	_X				
0x11	0x31	ECC_11	UNL	JSED_11				S	ENS	TC_H	OT_F	_Y								OFF	ST	C_HC	T_F	_Y				
0x12	0x32	ECC_12	UNL	JSED_12								_Z								OFF	ST	C_HC	T_F	_z				

POL F X (EEPROM: 0x07, Shadow: 0x27 [15])

X-channel polarity bit.

AFE_CHAN_DIS_X (EEPROM: 0x07, Shadow: 0x27 [14])

X-channel disable. If the X-channel is not used, this feature can be leveraged to shut off the X-channel to reduce power and processing time.

SENS F X (EEPROM: 0x07, Shadow: 0x27 [13:0])

X-channel sensitivity adjustment. This parameter is used to align the channels at the factory trim. When installed in application, it is available for corrections. If this parameter is adjusted in application, factory accuracy is not ensured.

Range: $0 \times$ to $8 \times$. Step Size: 2^{-11} .

POL_F_Y (EEPROM: 0x08, Shadow: 0x28 [15])

Y-channel polarity bit.

AFE CHAN DIS Y (EEPROM: 0x08, Shadow: 0x28 [14])

Y-channel disable. If the Y-channel is not used, this feature can be leveraged to shut off the Y-channel to reduce power and processing time.

SENS F Y (EEPROM: 0x08, Shadow: 0x28 [13:0])

Y-channel sensitivity adjustment. This parameter is used to align the channels at the factory trim. When installed in application, it is available for corrections. If this parameter is adjusted in application, factory accuracy is not ensured.

Range: $0 \times$ to $8 \times$. Step Size: 2^{-11} .

POL_F_Z (EEPROM: 0x09, Shadow: 0x29 [15])

Z-channel polarity bit.

AFE CHAN DIS Z (EEPROM: 0x09, Shadow: 0x29 [14])

Z-channel disable. If the Z-channel is not used, this feature can be leveraged to shut off the Z-channel to reduce power and processing time.

SENS F Z (EEPROM: 0x09, Shadow: 0x29 [13:0])

Z-channel sensitivity adjustment. This parameter is used to align the channels at the factory trim. When installed in application, it is available for corrections. If this parameter is adjusted in application, factory accuracy is not ensured.

Range: $0 \times$ to $8 \times$. Step Size: 2^{-11} .

A31331

3D Linear Hall-Effect Sensor

with SPI, I²C Interfaces, and Advanced Low-Power Management

SENSTC CLD F X (EEPROM: 0x0D, Shadow: 0x2D [22:12])

X-channel sensitivity adjustment for $-40^{\circ}\text{C} \leq T_A < 25^{\circ}\text{C}$ temperature segment. This parameter is used to align the channels at the factory trim to a target compensation. When installed in application, it is available for corrections. If this parameter is adjusted in application, factory accuracy is not ensured.

Range: $\pm 0.78\%$ /°C. Step Size: -7.63e-4%/°C.

OFFSETC CLD F X (EEPROM: 0x0D, Shadow: 0x2D [11:0])

X-channel offset adjustment for $-40^{\circ}\text{C} \leq T_A < 25^{\circ}\text{C}$ temperature segment. This parameter is used to correct the channel offset at the factory trim in the cold temperature segment. When installed in application, it is available for corrections. If this parameter is adjusted in application, factory accuracy is not ensured.

Range: $\pm 64 \text{ LSB}_{15}/^{\circ}\text{C}$.

Step Size: $-0.0313 \text{ LSB}_{15}\%/^{\circ}\text{C}$.

SENSTC_CLD_F_Y (EEPROM: 0x0E, Shadow: 0x2E [22:12])

Y-channel sensitivity adjustment for $-40^{\circ}\text{C} \leq T_A < 25^{\circ}\text{C}$ temperature segment. This parameter is used to align the channels at the factory trim to a target compensation. When installed in application, it is available for corrections. If this parameter is adjusted in application, factory accuracy is not ensured.

Range: ±0.78%/°C. Step Size: -7.63e-4%/°C.

OFFSETC_CLD_F_Y (EEPROM: 0x0E, Shadow: 0x2E [11:0])

Y-channel offset adjustment for $-40^{\circ}\text{C} \leq T_A < 25^{\circ}\text{C}$ temperature segment. This parameter is used to correct the channel offset at the factory trim in the cold temperature segment. When installed in application, it is available for corrections. If this parameter is adjusted in application, factory accuracy is not ensured.

Range: $\pm 64 \text{ LSB}_{15}/^{\circ}\text{C}$.

Step Size: -0.0313 LSB₁₅%/°C.

SENSTC_CLD_F_Z (EEPROM: 0x0F, Shadow: 0x2F [22:12])

Z-channel sensitivity adjustment for $-40^{\circ} C \leq T_A < 25^{\circ} C$ temperature segment. This parameter is used to align the channels at the factory trim to a target compensation. When installed in application, it is available for corrections. If this parameter is adjusted in application, factory accuracy is not ensured.

Range: ±0.78%/°C. Step Size: -7.63e-4%/°C.

OFFSETC CLD F Z (EEPROM: 0x0F, Shadow: 0x2F [11:0])

Z-channel offset adjustment for $-40^{\circ}\mathrm{C} \leq T_{\mathrm{A}} < 25^{\circ}\mathrm{C}$ temperature segment. This parameter is used to correct the channel offset at the factory trim in the cold temperature segment. When installed in application, it is available for corrections. If this parameter is adjusted in application, factory accuracy is not ensured.

Range: $\pm 64 \text{ LSB}_{15}/^{\circ}\text{C}$.

Step Size: $-0.0313 \text{ LSB}_{15}\%/^{\circ}\text{C}$.

SENSTC_HOT_F_X (EEPROM: 0x10, Shadow: 0x30 [22:12])

X-channel sensitivity adjustment for $25^{\circ}\text{C} < \text{T}_{\text{A}} \le 85^{\circ}\text{C}$ temperature segment. This parameter is used to align the channels at the factory trim to a target compensation. When installed in application, it is available for corrections. If this parameter is adjusted in application, factory accuracy is not ensured.

Range: $\pm 0.39\%$ /°C. Step Size: 3.81e-4%/°C.

OFFSETC_HOT_F_X (EEPROM: 0x10, Shadow: 0x30 [11:0])

X-channel offset adjustment for $25^{\circ}\mathrm{C} < T_{A} \le 85^{\circ}\mathrm{C}$ temperature segment. This parameter is used to correct the channel offset at the factory trim in the cold temperature segment. When installed in application, it is available for corrections. If this parameter is adjusted in application, factory accuracy is not ensured.

Range: $\pm 32 LSB_{15}$ /°C.

Step Size: 0.0156 LSB₁₅%/°C.

SENSTC HOT F Y (EEPROM: 0x11, Shadow: 0x31 [22:12])

Y-channel sensitivity adjustment for $25^{\circ}\text{C} < \text{T}_{\text{A}} \le 85^{\circ}\text{C}$ temperature segment. This parameter is used to align the channels at the factory trim to a target compensation. When installed in application, it is available for corrections. If this parameter is adjusted in application, factory accuracy is not ensured.

Range: ±0.39%/°C Step Size: 3.81e-4%/°C

OFFSETC_HOT_F_Y (EEPROM: 0x11, Shadow: 0x31 [11:0])

Y-channel offset adjustment for $25^{\circ}\mathrm{C} < T_{A} \le 85^{\circ}\mathrm{C}$ temperature segment. This parameter is used to correct the channel offset at the factory trim in the cold temperature segment. When installed in application, it is available for corrections. If this parameter is adjusted in application, factory accuracy is not ensured.

Range: ±32 LSB₁₅/°C

Step Size: 0.0156 LSB₁₅%/°C

A31331

3D Linear Hall-Effect Sensor

with SPI, I²C Interfaces, and Advanced Low-Power Management

SENSTC HOT F Z (EEPROM: 0x12, Shadow: 0x32 [22:12])

Z-channel sensitivity adjustment for $25^{\circ}\text{C} < T_{A} \le 85^{\circ}\text{C}$ temperature segment. This parameter is used to align the channels at the factory trim to a target compensation. When installed in application, it is available for corrections. If this parameter is adjusted in application, factory accuracy is not ensured.

Range: ±0.39%/°C. Step Size: 3.81e-4%/°C.

OFFSETC_HOT_F_Z (EEPROM: 0x12, Shadow: 0x32 [11:0])

Z-channel offset adjustment for $25^{\circ}\text{C} < \text{T}_{\text{A}} \le 85^{\circ}\text{C}$ temperature segment. This parameter is used to correct the channel offset at the factory trim in the cold temperature segment. When installed in application, it is available for corrections. If this parameter is adjusted in application, factory accuracy is not ensured.

Range: ± 32 LSB₁₅/°C.

Step Size: 0.0156 LSB₁₅%/°C.

Table 21: EEPROM/Shadow Memory: Device Configuration Parameters

EEPROM	Shadow												bit															
Address	Address	31 to 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x13	0x33	ECC_13	UNI	USED	_13	SMPL_INT_POL	INT_FLAG_LATCH	INT_SIGN		INT ₋	_SEL							INT_	THR						CORDIC_POL		CORDIC_SEL	
0x14	0x34	ECC_14									U	INUS	ED_1	4										CIC_BW_SEL_LPM			CIC_BW_SEL	
0x15	0x35	ECC_15	ι	JNUSI	ED_1	5	INT_EDGE_RATE	SPI_EDGE_RATE	SPI_CRC_EN	I2C_CRC_EN	I2C_SLV_ADDR_IGNORE			12C_§	SLV_#	ADDR			I2C_THRESH_SEL	I2C_DIS_SLV_ADDR			SPAF	RE_15	5		DATA_LATCH	INTERFACE_SELECT

SMPL INT POL (EEPROM: 0x13, Shadow: 0x33 [22])

This parameter controls the polarity of the special function bin: 0 (default) = active low; 1 = active high.

INT FLAG LATCH (EEPROM: 0x13, Shadow: 0x33 [21])

This parameter sets the latch assertion behavior of the INT/SAM-PLE pin when the condition is removed. In the default, 0, case, the INT/SAMPLE pin output does not remain asserted. For more information, see the Interrupt Mode topic in the Special Function Pin INT/SAMPLE section.

INT SIGN (EEPROM: 0x13, Shadow: 0x33 [20])

This parameter selects the sign of the comparison to the threshold to set the interrupt from signal less than the programmed threshold (0, default) to signal greater than the programmed threshold (1). For more information, see the Interrupt Mode topic in the Special Function Pin INT/SAMPLE section.

INT SEL (EEPROM: 0x13, Shadow: 0x33 [19:16])

This parameter selects the signal to compare to the threshold programmed in INTERRUPT_THR_MSB/LSB_DIR, as shown in the table in the Interrupt Mode topic in the Special Function Pin INT/SAMPLE section.

INT_THR (EEPROM: 0x13, Shadow: 0x33 [15:4])

This parameter sets the threshold value for the interrupt comparison that is loaded into INTERRUPT_THR_MSB/LSB_DIR upon a reset. For more information, see the Interrupt Mode topic in the Special Function Pin INT/SAMPLE section.

CORDIC POL (EEPROM: 0x13, Shadow: 0x33 [3])

This parameter sets the output to be increasing in code or decreasing in code for an increasing magnetic angle input. For more information, see the Magnetic Sensor(s) Output section.

CORDIC SEL (EEPROM: 0x13, Shadow: 0x33 [2:0])

This parameter sets the two channels used for the ATAN angle calculation. For more information, see the Magnetic Sensor(s) Output section.

A31331

3D Linear Hall-Effect Sensor

with SPI, I²C Interfaces, and Advanced Low-Power Management

CIC BW SEL LPM (EEPROM: 0x14, Shadow: 0x34 [5:3])

This parameter sets the BW in low-power mode (OP_MODE = 3,4). This parameter sets the amount of time the part is awake making conversions for each active channel before returning to sleep. For more information, see the Bandwidth Selection and Low-Power Duty Cycle Mode (LPDCM) sections.

CIC BW SEL (EEPROM: 0x14, Shadow: 0x34 [2:0])

Sets the BW in active mode (OP_MODE = 0, 1, or 2). For more information, see the Bandwidth Selection section.

INT EDGE RATE (EEPROM: 0x15, Shadow: 0x35 [21])

Interrupt output pin edge rate. For a faster edge and higher-speed communications, set to 0; for a slower edge for power savings, set to 1.

SPI EDGE RATE (EEPROM: 0x15, Shadow: 0x35 [20])

SPI output edge filtering. For a faster edge and higher-speed communications, set to 0; for a slower edge for power savings, set to 1.

SPI_CRC_EN (EEPROM: 0x15, Shadow: 0x35 [19])

This parameter enables the CRC on the SPI message. When set, the SPI packet is 20 bits: 16 bits of data and 4 bits of CRC. For more information, see the SPI Error Checking section.

I2C CRC EN (EEPROM: 0x15, Shadow: 0x35 [18])

This parameter enables the CRC on the I²C message frame. When set, the 8-bit CRC is added to the read transaction. For more information, see the I²C CRC Byte section.

I2C_SLV_ADDR_IGNORE (EEPROM: 0x15, Shadow: 0x35 [17])

When this parameter is set, the device responds to any I²C command, and it ignores the address.

I2C SLV ADDR (EEPROM: 0x15, Shadow: 0x35 [16:10])

This parameter is used to set the peripheral address for I²C communications when either the external pins are set high or the I²C_DIS_SLV_ADDR is set to one. For more information, see the I²C CRC Byte section.

I2C_THRESH_SEL (EEPROM: 0x15, Shadow: 0x35 [9])

This parameter sets the input thresholds for the I²C communication to either 3.0 V compatible (0, default) or 1.8 V compatible (1).

I2C DIS SLV ADDR (EEPROM: 0x15, Shadow: 0x35 [8])

This parameter disables the external I²C address pins and latches the current address. The address pins are constantly scanned after power on to check for a change in address. If this bit is set, the last detected address becomes latched. If this is set at power on, the address is set to 96.

SPARE_15 (EEPROM: 0x15, Shadow: 0x35 [7:2])

Unused space in the EEPROM.

DATA_LATCH (EEPROM: 0x15, Shadow: 0x35 [1])

This parameter allows the latch feature of the output registers to be disabled. When set to zero, the registers continuously update as soon as a new sample is ready for each independent register. When set to 1, the output registers latch from the same point in time, and the host can read each register without the need for a register update upon each register read. To initiate a new latch of the data when DATA_LATCH = 1, the STATUS_READY bit must be cleared.

INTERFACE SELECT (EEPROM: 0x15, Shadow: 0x35 [0])

Sets the active interface to I²C when 0, and to SPI when 1.

Table 22: Indirect Volatile Parameters

Address																b	it															
Address	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	EE_LOOP		EE_T	EST_	ADDR		EE_USE_TEST_ADDR	MARGIN_MIN_MAX_FAIL	l	MAKGIN_STALUS	MARGIN_NO_MIN	MARGIN_NO_MAX	MARGIN_START
0x47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	LBIST_PASS1_FAIL0	BIST_DONE	BIST_START
0x48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					A	CCES	S BIT	s				

EE LOOP (0x44 [12])

This parameter causes margin or pattern testing to loop until an error is found.

EE TEST ADDR (0x44[11:7])

If EE_USE_TEST_ADDR is set, the start of margining or pattern testing occurs at the address programmed in EE_TEST_ADDR. If the test fails, this parameter contains the failing address.

EE USE TEST ADDR (0x44 [6])

This parameter sets the starting address for margining to EE_TEST_ADDR when set to 1. If EE_LOOP is set, this bit is ignored, and the testing always starts at 0x00.

MARGIN_MIN_MAX_FAIL (0x44 [5])

If margining fails, this bit indicates if the minimum or maximum reference failed. If MARGIN_STATUS = 2 and MARGIN_MIN_MAX = 0, the minimum threshold failed. If MARGIN_STATUS = 2 and MARGIN_MIN_MAX = 1, the maximum threshold failed.

MARGIN STATUS (0x44 [4:3])

This parameter indicates the status of the margining testing. For more information, see the EEPROM Margin Checking section.

MARGIN_NO_MIN (0x44 [2])

This parameter disables the check of the minimum threshold when running margining. For typical use, this is not recommended.

MARGIN_NO_MAX (0x44 [1])

This parameter disables the check of the maximum threshold when running margining. For typical use, this is not recommended.

MARGIN START (0x44 [0])

This parameter starts the margining test. For more information, see the EEPROM Margin Checking section.

LBIST_PASS1_FAIL0 (0x44 [2])

This bit contains the result of the logic built-in self-test (LBIST) testing. If 1, the testing passed; if 0, the testing failed or was not run

BIST DONE (0x44 [1])

This bit is set to 1 when LBIST is complete.

BIST START (0x44 [0])

This bit is used to start the internal LBIST testing.

ACCESS BITS (0x48 [11:0])

This bit contains flags that indicate the internal access modes. It is for factory use only.

PACKAGE OUTLINE DRAWING For Reference Only – Not for Tooling Use

(Reference MO-153AA)
Dimensions in millimeters - NOT TO SCALE
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions
Exact case and lead configuration at supplier discretion within limits shown

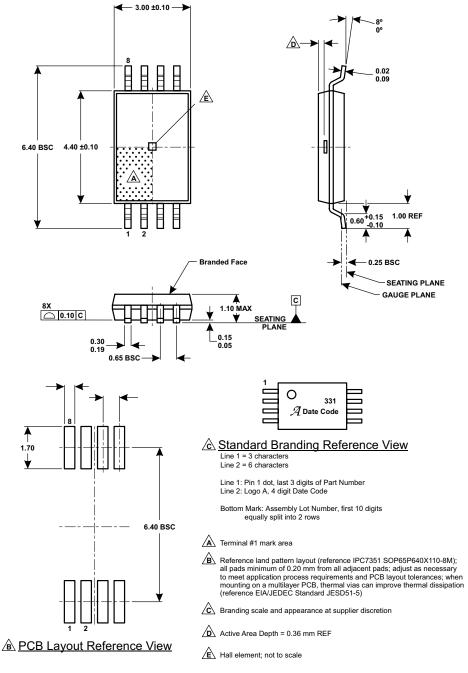


Figure 13: TSSOP-8 (LE) Package Drawing

A31331

3D Linear Hall-Effect Sensor

with SPI, I²C Interfaces, and Advanced Low-Power Management

Revision History

Number	Date	Description
_	March 13, 2025	Initial release

Copyright 2025, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

www.allegromicro.com

