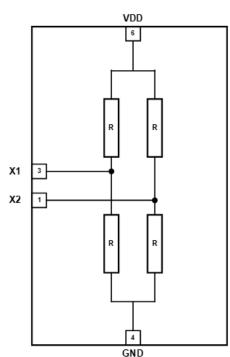


1D Linear Sensor

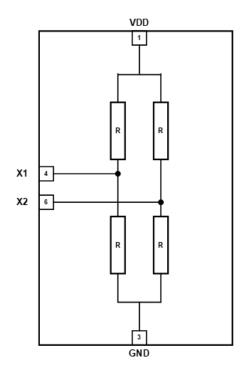
FEATURES AND BENEFITS

- Operating magnetic field range: ±50 mT
- Stable magnetic performance over temperature
- Linearity error: $\pm 0.5\%$ from -20 mT to ± 20 mT
- Differential outputs
- Supply voltage: 1.0 to 5.5 V
- Operating temperature: -40°C to 150°C
- Package options:
 - □ 6-lead SOT23
 - \square 6-lead DFN, 1.50 mm \times 1.50 mm \times 0.45 mm
 - □ KGD (known good die) in wafer form

APPLICATIONS


- Linear measurements
- Proximity sensing
- Current sensing

DESCRIPTION


The CT100 is a 1D linear sensor in full-bridge configuration from Allegro developed on its patented XtremeSenseTM TMR technology. The total magnetic field range for the CT100 is from -50 mT to 50 mT and it achieves a linearity error of $\pm 0.5\%$ for a range of -20 mT to 20 mT while providing XtremeSense performance to achieve unparalleled temperature stability across the full temperature range. The device supports a wide operating voltage range of 1.0 to 5.5 V.

The CT100 is available in a 6-lead SOT23 package, and for space-critical applications, a low-profile and small form factor 6-lead DFN package that is $1.50 \text{ mm} \times 1.50 \text{ mm} \times 0.45 \text{ mm}$ in size. The CT100 is also available in die form where it will be shipped as unsawn wafers (wafer map files will be provided to indicate known good die).

FUNCTIONAL BLOCK DIAGRAMS

Figure 2: CT100 Functional Block Diagram for DFN-6

1D Linear Sensor

Table of Contents

Features and Benefits	1
Description	1
Applications	1
Functional Block Diagrams	1
Selection Guide	2
Absolute Maximum Ratings	2
Recommended Operating Conditions	2
Pinout Diagrams and Terminal Lists	3
-	

Electrical Characteristics	6
Recommended Application Circuit	
Applications Information	8
Package Outline Drawings	9
Tape and Reel Pocket Drawings and Dimensions	11
Package Information	13
Revision History	14

SELECTION GUIDE

Part Number	Operating Temperature Range (°C)	Output Type	Package	Packing
CT100LW-IS6	-40 to 85			
CT100LW-HS6	-40 to 125	Differential	6-lead SOT23 2.90 mm × 2.80 mm × 1.20 mm	Tape and Reel
CT100LW-FS6	-40 to 150			
CT100LW-ID6	-40 to 85			
CT100LW-HD6	-40 to 125	Differential	6-lead DFN 1.50 mm × 1.50 mm × 0.45 mm	Tape and Reel
CT100LW-FD6	-40 to 150			
CT100LW-KGD	-40 to 150	Differential	Wafer Form	Unsawn Wafer

ABSOLUTE MAXIMUM RATINGS [1]

Characteristic	Symbol	Notes	Rating	Unit
Supply Voltage Strength	V _{DD}		-0.3 to 6.0	V
Analog Output Pins Maximum Voltage	V _{OUT}		±1560	mV
Flastratetia Discharge Protection Level	ESD	Human Body Model (HBM) per JESD22-A114	±4.0 (min)	kV
Electrostatic Discharge Protection Level	ESD	Charged Device Model (CDM) per JESD22-C101	±1.0 (min)	kV
Maximum Magnetic Field	B _{MAX}	$T_A = 25^{\circ}C$	±200	mT
Storage Temperature	T _{STG}		–65 to 160	°C
Lead Soldering Temperature	TL	10 seconds	260	°C

^[1] Stresses exceeding the absolute maximum ratings may damage the CT100 and may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

RECOMMENDED OPERATING CONDITIONS^[1]

Characteristic	Symbol	Notes	Min.	Тур.	Max.	Unit
Supply Voltage Range	V _{DD}		1.0	3.0	5.5	V
Output Voltage Range	V _{OUT}		-1430	-	1430	mV
Operating Magnetic Field	B _{OP}		-	_	±50	mT
		Industrial	-40	25	85	°C
Operating Ambient Temperature	T _A	Extended Industrial	-40	25	125	°C
		Full Range	-40	25	150	°C

^[1] The Recommended Operating Conditions table defines the conditions for actual operation of the CT100. Recommended operating conditions are specified to ensure optimal performance to the specifications. Allegro does not recommend exceeding them or designing to absolute maximum ratings.

PINOUT DIAGRAMS AND TERMINAL LISTS

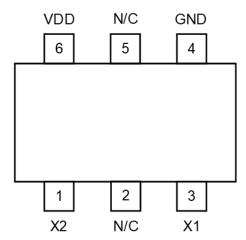


Figure 3: SOT23-6 Package, Top-Down View

Terminal List

Number	Name	Function
1	X2	Differential Output X2
2	N/C	No Connect
3	X1	Differential Output X1
4	GND	Ground
5	N/C	No Connect
6	VDD	Supply Voltage

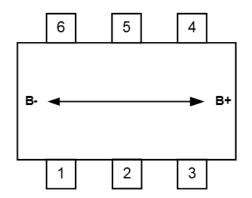


Figure 4: CT100 Axis of Sensitivity for SOT23-6 (Top Down View)

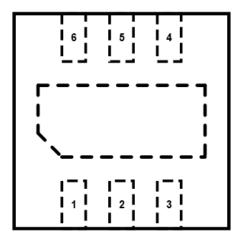
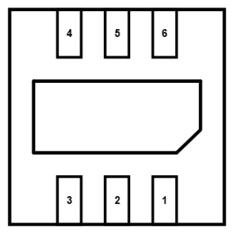
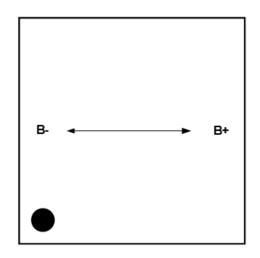
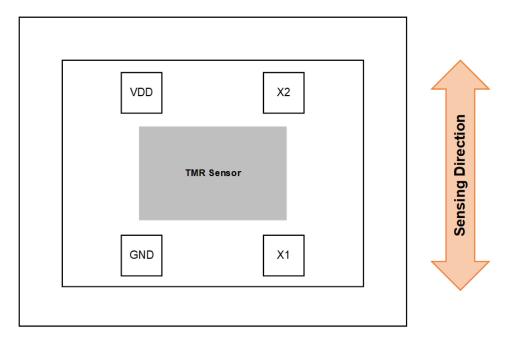


Figure 5: DFN-6, Top-Down View

Terminal List

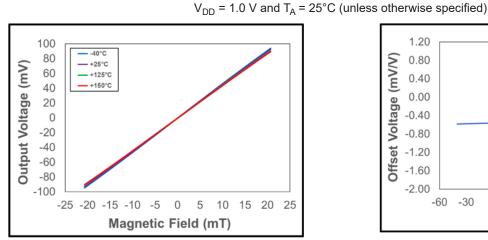

Figure 6: DFN-6, Bottom-Up View

Ierminal List					
Number Name		Function			
1	VDD	Supply Voltage			
2	N/C	No Connect			
3	GND	Ground			
4	X1	Differential Output X1			
5	N/C	No Connect			
6	X2	Differential Output X2			

Figure 8: CT100 Die Layout and Axis of Sensitivity, Top-Down View

Pad List

Number	Name	Function
1	VDD	Supply Voltage
2	X2	Differential Output X2
3	X1	Differential Output X1
4	GND	Ground


1D Linear Sensor

ELECTRICAL CHARACTERISTICS: Valid for V_{DD} = 1.0 V to 5.5 V and T_A = -40°C to 150°C, typical values are V_{DD} = 3.0 V and T_A = 25°C, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
MAGNETIC				·		
Operating Magnetic Field	B _{OP}		_	-	±50	mT
ELECTRICAL						
Bridge Resistance	R _{BRIDGE}		20	-	40	kΩ
Power Consumption	PD	V_{DD} = 3.0 V, R_{BRIDGE} = 30 k Ω	-	0.30	_	mW
Offset Voltage	V _{OFFSET}	$B_{OP} = \pm 20 \text{ mT}$	-5		+5	mV/V
Sensitivity (Full-Bridge Gain)	S	$B_{OP} = \pm 20 \text{ mT}$	3.8	4.5	5.2	mV/V/mT
Bridge Temperature Coefficient Resistance ^[1]	TCR _{BRIDGE}		_	-	-750	ppm/°C
Offset Voltage Temperature Coefficient [1]	тсо		-	-	±4.0	µV/V/°C
Sensitivity Temperature Coefficient ^[1]	TCS		_	-250	-350	ppm/°C
Linearity	L	B _{OP} = ±20 mT	_	_	±0.5	%
Hysteresis Error	E _{HYST}	B _{OP} = ±20 mT, T _A = 25°C	_	_	0.05	%
Output Noise [1]	e _N	f = 10 Hz, V _{DD} = 1.0 V, B _{OP} = 0 mT, T _A = 25°C	_	700	_	nV _{RMS} /√Hz

ELECTRICAL CHARACTERISTICS

^[1] Guaranteed by design and characterization; not tested in production.

Figure 9: Sensitivity – Output Voltage vs. Magnetic Field vs. Temperature

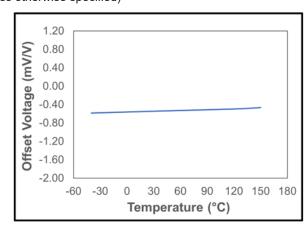


Figure 10: Offset Voltage vs. Temperature

1D Linear Sensor

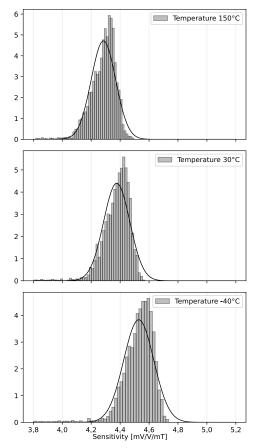


Figure 11: Sensitivity Distribution and Normal Fit Curve from production samples (N = 4019)

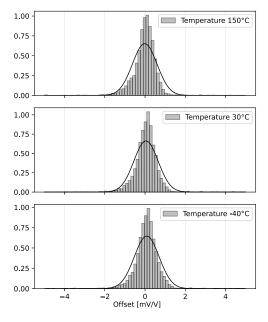
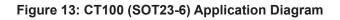



Figure 12: Offset Voltage Distribution and Normal Fit Curve from production samples (N = 4019)

RECOMMENDED APPLICATION CIRCUIT

Table 1:	Recommended	External	Components
----------	-------------	----------	------------

Co	mponent	Description	Vendor and Part Number	Parameter	Min.	Тур.	Max.	Unit
	C _{BYP}	0.1 µF, X7R	Murata GRM033Z71A104KE14	С	-	0.1	-	μF

Applications Information

The XtremeSense TMR sensor location for the CT100 for the x, y dimensions are shown in Figure 14 and Figure 15 for the SOT23-6 and DFN-6 packages, respectively. Figure 16 and Figure 17 illustrates the location of the CT100 XtremeSense TMR sensor from the z dimension. All dimensions in the figures below are nominal.

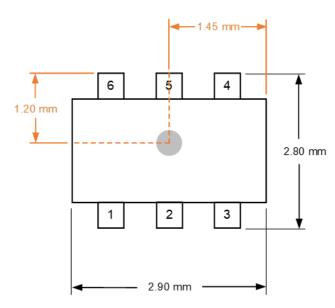


Figure 14: XtremeSense TMR Sensor Location in x-y Plane for CT100 in SOT23-6 Package

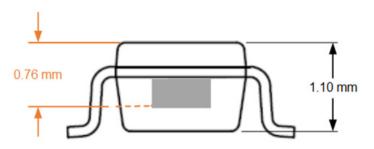


Figure 16: XtremeSense TMR Sensor Location in z Dimension for CT100 in SOT23-6 Package

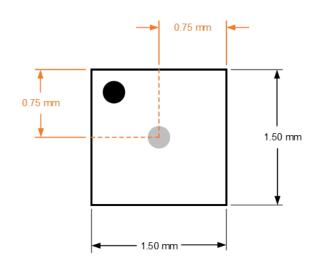


Figure 15: XtremeSense TMR Sensor Location in x-y Plane for CT100 in DFN-6 Package

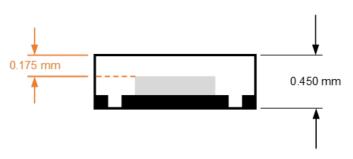
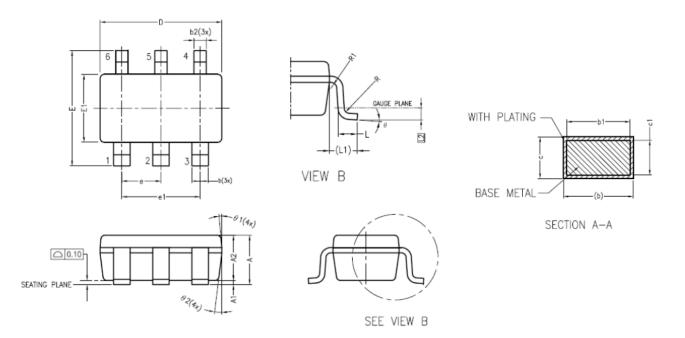


Figure 17: XtremeSense TMR Sensor Location in z Dimension for CT100 in DFN-6 Package



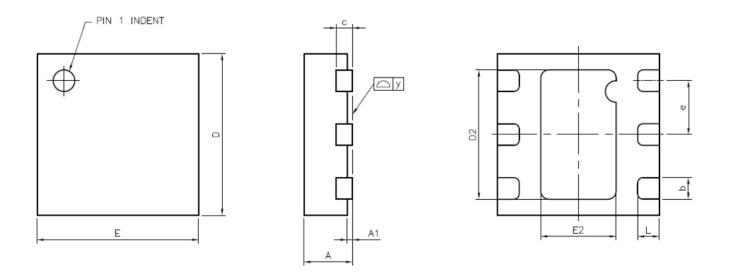
1D Linear Sensor

PACKAGE OUTLINE DRAWINGS

For Reference Only – Not for Tooling Use

Dimensions in millimeters – NOT TO SCALE Dimensions exclusive of mold flash, gate burs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown

Figure 18: 6-Lead SOT23 Package Drawing


Table 2: CT100 6-Lead SOT23 Package Dimensions

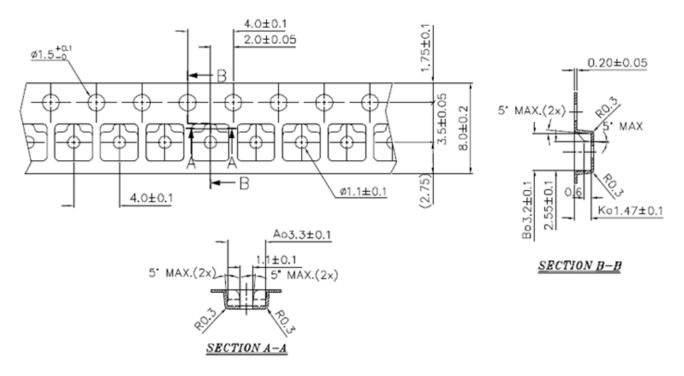
Symbol	Dimensions in Millimeters (mm)				
Symbol	Min.	Тур.	Max.		
А	1.05	1.20	1.35		
A1	0.00	0.10	0.15		
A2	1.00	1.10	1.20		
b	0.40	_	0.50		
b1	0.40	_	0.45		
b2	0.30	_	0.40		
с	0.08	-	0.22		
c1	0.08	0.13	0.20		
D	2.80	2.90	3.00		
E	2.60	2.80	3.00		
E1	1.50	1.60	1.70		

Symbol	Dimensions in Millimeters (mm)			
	Min.	Тур.	Max.	
е	0.95 BSC			
e1	1.90 BSC			
L	0.35 0.43 0.60			
L1	0.60 REF			
L2	0.25 BSC			
R	0.10 – –			
R1	0.10	0.10 – 0		
θ	0° 4° 8°		8°	
θ1	5°	6° 15°		
θ2	5°	8° 15°		

Allegro MicroSystems 955 Perimeter Road Manchester, NH 03103-3353 U.S.A. www.allegromicro.com

Figure 19: DFN-6 Package Drawing

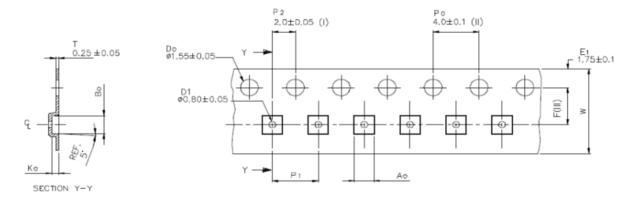
Sympol	Dimensions in Millimeters (mm)				
Symbol	Min.	Тур.	Max.		
А	0.40	0.45	0.50		
A1	0.00	0.02	0.05		
b	0.15	0.20	0.25		
С	_	0.15 REF	_		
D	1.40	1.50	1.60		
D2	1.15	1.20	1.25		
E	1.40	1.50	1.60		
E2	0.65	0.70	0.75		
е	_	0.50	_		
L	0.15	0.20	0.25		
у	0.000	_	0.075		


Table 3: CT100 DFN-6 Package Dimensions

TAPE AND REEL POCKET DRAWINGS AND DIMENSIONS

For Reference Only – Not for Tooling Use

Dimensions in millimeters – NOT TO SCALE Dimensions exclusive of mold flash, gate burs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown



NOTES:

- 1. Material: Conductive Polystyrene.
- 2. Dimensions in mm.
- 3. 10 sprocket hole pitch cumulative tolerance ± 0.20 mm.
- 4. Camber not to exceed 1 mm in 100 mm.
- 5. Pocket position relative to sprocket hole measured as true position of pocket and not pocket hole.
- 6. (S.R. Ω/sq) means surface electric resistivity of the carrier tape.

Figure 20: Tape and Pocket Drawing for SOT23 Package

NOTES:

- 1. Measured from centerline of sprocket hole to centerline of pocket.
- 2. Cumulative tolerance of 10 sprocket holes is ± 0.20 .
- 3. Measured from centerline of sprocket hole to centerline of pocket.
- 4. Other material available.

Figure 21: Tape and Pocket Drawing for DFN-6 Package

Symbol	Dimension (mm)			
Ao	1.70 ± 0.05			
Во	1.70 ± 0.05			
Ко	0.60 ± 0.05			
F	3.50 ± 0.05			
P1	4.00 ± 0.10			
DW	8.00 ± 0.30			

Table 4: DFN-6 Tape and Pocket Dimensions

1D Linear Sensor

PACKAGE INFORMATION

Table 5: CT100 Package Information

Part Number	Package Type	# of Leads	Package Quantity	Lead Finish	Eco Plan ^[1]	MSL Rating ^[2]	Operating Temperature ^[3]	Device Marking ^[4]
CT100LW-IS6	SOT23	6	3000	Sn	Green & RoHS	1	–40°C to 85°C	CT YWWS
CT100LW-HS6	SOT23	6	3000	Sn	Green & RoHS	1	–40°C to 125°C	CT YWWS
CT100LW-FS6	SOT23	6	3000	Sn	Green & RoHS	1	–40°C to 150°C	CT YWWS
CT100LW-ID6	DFN	6	3000	Sn	Green & RoHS	1	–40°C to 85°C	C YZ
CT100LW-HD6	DFN	6	3000	Sn	Green & RoHS	1	–40°C to 125°C	C YZ
CT100LW-FD6	DFN	6	3000	Sn	Green & RoHS	1	–40°C to 150°C	C YZ

[1] RoHS is defined as semiconductor products that are compliant to the current EU RoHS requirements. It also will meet the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Green is defined as the content of chlorine (CI), bromine (Br), and antimony trioxide based flame retardants satisfy JS709B low halogen requirements of ≤ 1,000 ppm.

^[2] MSL Rating = Moisture Sensitivity Level Rating as defined by JEDEC standard classifications.

^[3] Package will withstand ambient temperature range of -40°C to 150°C and storage temperature range of -65°C to 160°C.

^[4] Device Marking for SOT23 is defined as XZ YWWS where XZ = part number, Y = year, WW = work week, and S = sequential number. DFN is defined as X where X = part number and YZ = date code information.

Revision History

Number	Date	Description
3	November 2, 2023	Document rebranded and minor editorial updates
4	June 4, 2024	Added notes to package outline drawing (pages 9 and 11)
5	August 20, 2024	Added distribution graphs (page 7)
6	December 9, 2024	Updated Electrical Characteristics table (page 6), updated Sensitivity Distribution graph (page 7)

Copyright 2024, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

www.allegromicro.com

