

Not for New Design

The CT416 is in production but has been determined to be NOT FOR NEW DESIGN. This classification indicates that sale of this device is currently restricted to existing customer applications. The device should not be purchased for new design applications because obsolescence in the near future is probable. Samples are no longer available.

Date of status change: March 28, 2025

Recommended Substitutions:

For existing customer transition, and for new customers or new applications, refer to CT417.

NOTE: For detailed information on purchasing options, contact your local Allegro field applications engineer or sales representative.

Allegro MicroSystems reserves the right to make, from time to time, revisions to the anticipated product life cycle plan for a product to accommodate changes in production capabilities, alternative product availabilities, or market demand. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

FEATURES AND BENEFITS

• Integrated contact current sensing for low to medium current ranges:

 $\begin{array}{cccc} \square \ 0 \ to \ 20 \ A & \qquad \square \ 0 \ to \ 50 \ A \\ \square \ \pm 20 \ A & \qquad \square \ \pm 50 \ A \\ \square \ 0 \ to \ 30 \ A & \qquad \square \ 0 \ to \ 65 \ A \\ \square \ \pm 30 \ A & \qquad \square \ \pm 65 \ A \end{array}$

- Integrated current carrying conductor (CCC)
- Linear analog output voltage
- Total error output: ±1.0% FS
- 1 MHz bandwidth
- Response time: ~300 ns
- UL/IEC 62368-1 and UL1577 certification
 - ☐ Rated isolation voltage: 2.5 kV_{RMS}
 - \Box Working voltage for basic isolation: 560 V_{RMS}
 - ☐ Working voltage for reinforced isolation: 280 V_{RMS}
- Low noise: 9.5 to 19.0 mA_{RMS} @ $f_{BW} = 100 \text{ kHz}$
- Supply voltage: 3.0 to 3.6 V
- Filter function to reduce noise on output pin
- Immunity to common mode fields: -40 dB
- AEC-Q100 grade 1
- 8-lead SOIC package

DESCRIPTION

The CT416 is a high bandwidth and ultra-low noise integrated contact current sensor that uses Allegro patented XtremeSenseTM TMR technology to enable high accuracy current measurements for many industrial, consumer, and automotive applications. The device supports eight current ranges where the integrated current carrying conductor (CCC) will handle up to 65 A of current and generates a current measurement as a linear analog output voltage. The device achieves a total output error of about $\pm 1.0\%$ full-scale (FS).

The device has a \sim 300 ns output response time while the current consumption is about 6.0 mA and is immune to common-mode fields. The CT416 has a filter function to reduce the noise on the output pin.

The CT416 is offered in an industry-standard 8-lead SOIC package that is green and RoHS compliant.

APPLICATIONS

- Solar/power inverters
- · Power utility meter
- UPS, SMPS, and telecom power supplies
- Overcurrent fault protection
- Motor control

PACKAGE: 8-LEAD SOIC

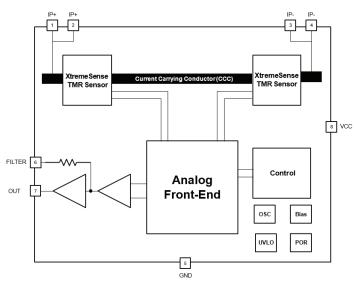


Figure 1: CT416 Functional Block Diagram for 8-lead SOIC Package

XtremeSense™ TMR Current Sensor with Ultra-Low Noise and <3% Total Error

SELECTION GUIDE

Part Number	Current Range (I _{PMAX}) (A)	Sensitivity (mV/A)	Operating Temperature Range (°C)	Package	Packing
CT416-HSN820MR	±20	50			
CT416-HSN830MR	±30	33.3			
CT416-HSN850MR	±50	20			
CT416-HSN865MR	±65	15.4	40 4- 405	8-lead SOIC	Tape and
CT416-HSN820DR	20	100	40 to 125	4.89 mm × 6.00 mm × 1.62 mm	Reel
CT416-HSN830DR	30	66.7			
CT416-HSN850DR	50	40			
CT416-HSN865DR	65	30.8			
AEC-Q100 GRADE 1					
CT416-ASN820MR	±20	50			
CT416-ASN830MR	±30	33.3			
CT416-ASN850MR	±50	20			
CT416-ASN865MR	±65	15.4	Grade 1	8-lead SOIC	Tape and
CT416-ASN820DR	20	100	-40 to 125	4.89 mm × 6.00 mm × 1.62 mm	Reel
CT416-ASN830DR	30	66.7	_		
CT416-ASN850DR	50	40			
CT416-ASN865DR	65	30.8			

Table of Contents

Features and Benefits	1
Description	1
Applications	1
Package	1
Functional Block Diagram	1
Selection Guide	2
Absolute Maximum Ratings	3
Recommended Operating Conditions	3
Thermal Characteristics	3
Isolation Ratings	4
Application Diagram	4
Pinout Diagram and Terminal List	5
Electrical Characteristics	6
Functional Description	17
Package Outline Drawing	21
Tape and Reel Pocket Drawing and Dimensions	22
Package Information	23
Device Marking	24
Part Ordering Number Legend	24
Revision History	25

ABSOLUTE MAXIMUM RATINGS [1]

Characteristic	Symbol	Notes	Rating	Unit
Supply Voltage Strength	V _{CC}		-0.3 to 6.0	V
Analog Input/Output Pins Maximum Voltage	V _{I/O}		-0.3 to V _{CC} + 0.3 ^[2]	V
Current Carrying Conductor Maximum Current	I _{CCC(MAX)}	T _A = 25°C	70	Α
Dielectric Surge Strength Test Voltage	V _{SURGE}	IEC 61000-4-5: Tested ±5 Pulses at 2/60 seconds, 1.2 µs (rise) and 50 µs (width)	6.0 (min)	kV
Surge Strength Test Current	I _{SURGE}	Tested ±5 Pulses at 3/60 seconds, 8.0 µs (rise) and 20 µs (width)	3.0 (min)	kA
Floatroctatic Discharge Protection Level	ECD	Human Body Model (HBM) per JESD22-A114	±2.0	kV
Electrostatic Discharge Protection Level	ESD	Charged Device Model (CDM) per JESD22-C101	±0.5	kV
Junction Temperature	TJ		-40 to 150	°C
Storage Temperature	T _{STG}		-65 to 155	°C
Lead Soldering Temperature	T _L	10 seconds	260	°C

^[1] Stresses exceeding the absolute maximum ratings may damage the CT416 and may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

RECOMMENDED OPERATING CONDITIONS [1]

Characteristic	Symbol	Notes	Min.	Тур.	Max.	Unit
Supply Voltage Range	V _{CC}		3.0	3.3	3.6	V
Output Voltage Range	V _{OUT}		0	_	V _{CC}	V
Output Current	I _{OUT}		_	_	±1.0	mA
Operating Ambient Temperature	T _A	Extended Industrial	-40	25	125	°C
		Automotive	-40	25	125	°C

^[1] The Recommended Operating Conditions table defines the conditions for actual operation of the CT416. Recommended operating conditions are specified to ensure optimal performance to the specifications. Allegro does not recommend exceeding them or designing to absolute maximum ratings.

 $^{^{[2]}\,\}text{The lower of}\,\,\text{V}_{\text{CC}}$ + 0.3 V or 6.0 V.

ISOLATION RATINGS

Characteristic	Symbol	Notes	Rating	Unit
Impulse Withstand Voltage	V _{IMPULSE}	Tested ± 5 pulses at 2/minute in compliance to IEC 61000-4-5 1.2 μ s (rise) / 50 μ s (width)	3000	V _{PK}
Dielectric Withstand Voltage	V _{ISO}	Agency rated for 60 seconds per UL 62368-1:2014 (edition 2) and per UL 1577[1]	2500	V _{RMS}
Marking Voltage for Decis location	V	Maximum approved working voltage for basic insulation according	792	V _{PK}
Working Voltage for Basic Isolation	V _{WVBI}	to UL 62368-1:2014 (edition 2)	560	V _{RMS}
Marking Valtage for Deinforced location	V	Maximum approved working voltage for reinforced insulation	396	V _{PK}
Working Voltage for Reinforced Isolation	V_{WBRI}	according to UL 62368-1:2014 (edition 2)	280	V _{RMS}
Creepage Distance	D _{CR}	Minimum distance along package body from IP leads to signal leads.	4	mm
Clearance Distance	D _{CL}	Minimum distance through air from IP leads to signal leads	4	mm
Distance Through Isolation	DTI	Minimum internal distance through isolation	110	μm
Comparative Tracking Index	CTI	Material Group II	400 to 599	V

^{[1] 100%} Production-tested for 1 second in accorance with UL 62368-1 (edition 2) and UL 1577.

APPLICATION DIAGRAM

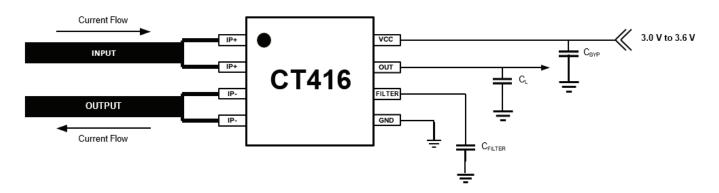


Figure 2: CT416 Application Block Diagram

Table 1: Recommended External Components

Component	Description	Vendor and Part Number	Min.	Тур.	Max.	Unit
C _{BYP}	1.0 µF, X5R or Better	Murata GRM155C81A105KA12	-	1.0	-	μF
C _{FILTER}	Various, X5R or Better	Murata	_	Figure 36	_	pF

PINOUT DIAGRAM AND TERMINAL LIST

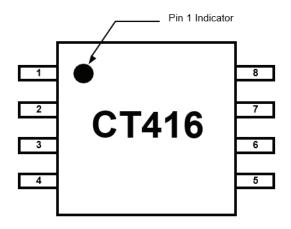


Figure 3: CT416 Pinout Diagram for 8-lead SOIC Package (Top-Down View)

Terminal List

Number	Name	Function
1, 2	IP+	Input primary conductor (positive).
3, 4	IP-	Output primary conductor (negative).
5	GND	Ground.
6	FILTER	Filter pin to improve noise performance by connecting an external capacitor to set the cutoff frequency. No connect if the FILTER pin is not used.
7	OUT	Analog output voltage that represents the measured current.
8	VCC	Supply voltage.

ELECTRICAL CHARACTERISTICS: Valid for V_{CC} = 3.0 to 3.6 V, C_{BYP} = 1.0 μ F, and T_A = $-40^{\circ}C$ to 125°C, typical values are V_{CC} = 3.3 V and T_A = 25°C, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
POWER SUPPLIES						
Supply Current	I_{CC}	f _{BW} = 1 MHz, no load, I _P = 0 A	_	6.0	9.0	mA
OUT Maximum Drive Capability [1]	I _{OUT}	OUT covers 10% to 90% of V _{CC} span	-1.0	-	+1.0	mA
OUT Capacitive Load [1]	C _{L_OUT}		_	-	100	pF
OUT Resistive Load [1]	R _{L_OUT}		_	100	-	kΩ
Primary Conductor Resistance [1]	R _{IP}		_	1	-	mΩ
Power Supply Rejection Ratio [1]	PSRR		_	35	-	dB
Sensitivity Power Supply Rejection Ratio [1]	SPSRR		-	35	_	dB
Offset Power Supply Rejection Ratio [1]	OPSRR		_	40	_	dB
ANALOG OUTPUT (OUT)						
OUT Voltage Linear Range, Typical	V _{OUT}	V _{SIG_AC} = ±1.00 V, V _{SIG_DC} = +2.00 V	0.65	-	2.65	V
Output High Saturation Voltage	V _{OUT_SAT}	V _{OUT} , T _A = 25°C	V _{CC} - 0.30	V _{CC} - 0.25	-	V
Common Made Field Dejection Datio [1]	CMFRR		_	-40	-	dB
Common Mode Field Rejection Ratio [1]	CMFRR		_	0.5	-	mA/G
TIMINGS						
Power-On Time [1]	t _{ON}	V _{CC} ≥ 2.50 V	_	100	200	μs
Rise Time [1]	t _{RISE}	$I_P = I_{RANGE(MAX)}$, $T_A = 25$ °C, $C_L = 100$ pF	_	200	-	ns
Response Time [1]	t _{RESPONSE}	$I_P = I_{RANGE(MAX)}$, $T_A = 25$ °C, $C_L = 100$ pF	_	300	-	ns
Propagation Delay [1]	t _{DELAY}	$I_P = I_{RANGE(MAX)}$, $T_A = 25$ °C, $C_L = 100$ pF	_	250	-	ns
PROTECTION			'			
Undervoltage Lockout	\/	Rising V _{DD}	_	2.50	-	V
Ondervoltage Lockout	V _{UVLO}	Falling V _{DD}	-	2.45	-	V
UVLO Hysteresis	V _{UV_HYS}		_	50	_	mV

 $[\]ensuremath{^{[1]}}$ Guaranteed by design and characterization; not tested in production.

ELECTRICAL CHARACTERISTICS

 V_{CC} = 3.3 V, T_A = 25°C, and C_{BYP} = 1.0 μF (unless otherwise specified)

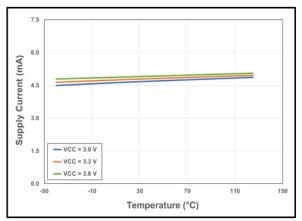


Figure 4: CT416 Supply Current vs. Temperature vs. Supply Voltage

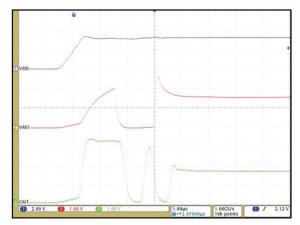


Figure 5: CT416 Startup Waveforms for V_{OQ} = 1.65 V (AC Current)

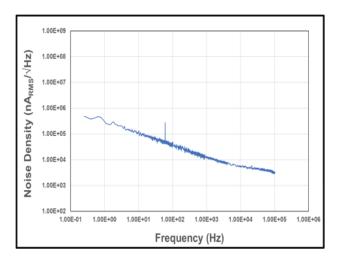


Figure 6: Noise Density vs. Frequency

ELECTRICAL CHARACTERISTICS (continued) V_{CC} = 3.3 V, T_A = 25°C, and C_{BYP} = 1.0 μF (unless otherwise specified)

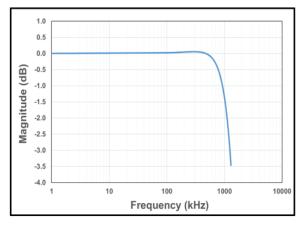


Figure 7: CT416 Bandwidth with $C_{FILTER} = 1.0 pF$

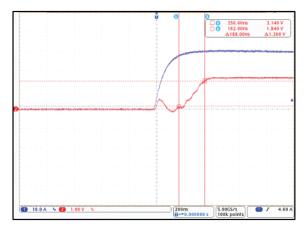


Figure 9: CT416 Rise Time; $I_p = 30 A_{PK}$ and $C_L = 100 pF$

Figure 8: CT416 Response Time; $I_P = 30 A_{PK}$ and $C_L = 100 pF$

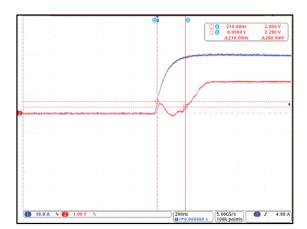


Figure 10: CT416 Propagation Delay; I_P = 30 A_{PK} and C_L = 100 pF

XtremeSense™ TMR Current Sensor with Ultra-Low Noise and <3% Total Error

CT416-xSN820DR: 0 to 20 A – PERFORMANCE CHARACTERISTICS: Valid for V_{CC} = 3.0 to 3.6 V, C_{BYP} = 1.0 μ F, and T_A = -40°C to 125°C, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Unit
Current Range	I _{RANGE}		0	-	20	А
Voltage Output Quiescent	V _{OQ}	T _A = 25°C, I _P = 0 A	0.645	0.650	0.655	V
Sensitivity	S	$I_{RANGE(MIN)} < I_{P} < I_{RANGE(MAX)}$	_	100	-	mV/A
Bandwidth [1]	f _{BW}	Small Signal = -3 dB	_	1.0	-	MHz
Noise [1]	e _N	$T_A = 25^{\circ}C$, $f_{BW} = 100 \text{ kHz}$	_	9.5	_	mA _{RMS}
OUT ACCURACY PERFORMANCE						
Total Output Error	E _{TOT}	I_P sweep from $I_{P(MIN)}$ to $I_{P(MAX)}$	_	-	±3.0	% FS
Linearity Error	E _{LIN}	$I_P = I_{P(MAX)}, T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	_	±0.3	_	% FS
		$I_P = I_{P(MAX)}, T_A = 25^{\circ}C$	_	±0.2	_	%
Sensitivity Error	E _{SENS}	$I_P = I_{P(MAX)}, T_A = 125$ °C	_	±2.9	_	%
		$I_P = I_{P(MAX)}, T_A = -40^{\circ}C$	_	±2.5	-	%
		I _P = 0 A, T _A = 25°C	_	±6	-	mV
Offset Voltage Error	V _{OE}	I _P = 0 A, T _A = 125°C	_	±28	_	mV
		I _P = 0 A, T _A = -40°C	_	±28	_	mV
LIFETIME DRIFT						
Total Error Including Lifetime Drift	E _{TOT(DRIFT)}	$I_{P} = I_{P(MAX),} T_{A} = -40^{\circ}C \text{ to } 125^{\circ}C$	_	±3.5	_	% FS
Sensitivity Error Including Lifetime Drift	E _{SENS(DRIFT)}	$I_{P} = I_{P(MAX),} T_{A} = -40^{\circ}C \text{ to } 125^{\circ}C$	_	±3.6	_	%
Offset Voltage Error Including Lifetime Drift	V _{OE(DRIFT)}	$I_P = 0 \text{ A}, T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	_	±35	_	mV

^[1] Typicals values are the mean ±3 sigma of production distributions. These are formatted as mean ±3 sigma.

^[2] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

XtremeSense™ TMR Current Sensor with Ultra-Low Noise and <3% Total Error

CT416-xSN820MR: ± 20 A – PERFORMANCE CHARACTERISTICS: Valid for V_{CC} = 3.0 to 3.6 V, C_{BYP} = 1.0 μ F, and T_A = -40° C to 125°C, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Unit
Current Range	I _{RANGE}		-20	_	20	Α
Voltage Output Quiescent	V _{OQ}	$T_A = 25$ °C, $I_P = 0$ A	1.645	1.650	1.655	V
Sensitivity	S	$I_{RANGE(MIN)} < I_{P} < I_{RANGE(MAX)}$	-	50	-	mV/A
Bandwidth [1]	f _{BW}	Small Signal = -3 dB	_	1.0	-	MHz
Noise [1]	e _N	T _A = 25°C, f _{BW} = 100 kHz	_	11.0	-	mA _{RMS}
OUT ACCURACY PERFORMANCE						
Total Output Error	E _{TOT}	I _P sweep from I _{P(MIN)} to I _{P(MAX)}	_	_	±3.0	% FS
Linearity Error	E _{LIN}	$I_P = I_{P(MAX)}, T_A = -40$ °C to 125°C	_	±0.1	_	% FS
		I _P = I _{P(MAX)} , T _A = 25°C	_	±0.4	_	%
Sensitivity Error	E _{SENS}	I _P = I _{P(MAX)} , T _A = 125°C	_	±3.0	-	%
		$I_P = I_{P(MAX)}, T_A = -40$ °C	_	±3.1	-	%
		I _P = 0 A, T _A = 25°C	_	±6	-	mV
Offset Voltage Error	V _{OE}	I _P = 0 A, T _A = 125°C	_	±23	_	mV
		I _P = 0 A, T _A = -40°C	_	±26	_	mV
LIFETIME DRIFT	•					
Total Error Including Lifetime Drift	E _{TOT(DRIFT)}	$I_P = I_{P(MAX)}, T_A = -40$ °C to 125°C	_	±3.1	_	% FS
Sensitivity Error Including Lifetime Drift	E _{SENS(DRIFT)}	$I_P = I_{P(MAX)}, T_A = -40$ °C to 125°C	_	±4.1	_	%
Offset Voltage Error Including Lifetime Drift	V _{OE(DRIFT)}	$I_P = 0 \text{ A}, T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	_	±33	-	mV

^[1] Typicals values are the mean ±3 sigma of production distributions. These are formatted as mean ±3 sigma.

^[2] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

XtremeSense™ TMR Current Sensor with Ultra-Low Noise and <3% Total Error

CT416-xSN830DR: 0 to 30 A – PERFORMANCE CHARACTERISTICS: Valid for V_{CC} = 3.0 to 3.6 V, C_{BYP} = 1.0 μ F, and T_A = -40°C to 125°C, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Unit
Current Range	I _{RANGE}		0	_	30	Α
Voltage Output Quiescent	V _{OQ}	$T_A = 25^{\circ}C, I_P = 0 A$	0.645	0.650	0.655	V
Sensitivity	S	$I_{RANGE(MIN)} < I_{P} < I_{RANGE(MAX)}$	_	66.7	_	mV/A
Bandwidth [1]	f _{BW}	Small Signal = -3 dB	_	1.0	_	MHz
Noise [1]	e _N	T _A = 25°C, f _{BW} = 100 kHz	_	10.0	_	mA _{RMS}
OUT ACCURACY PERFORMANCE						
Total Output Error	E _{TOT}	I_P sweep from $I_{P(MIN)}$ to $I_{P(MAX)}$	-	_	±3.0	% FS
Linearity Error	E _{LIN}	$I_P = I_{P(MAX)}, T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	_	±0.4	_	% FS
		$I_P = I_{P(MAX)}, T_A = 25^{\circ}C$	-	±0.4	_	%
Sensitivity Error	E _{SENS}	I _P = I _{P(MAX)} , T _A = 125°C	-	±2.6	_	%
		$I_P = I_{P(MAX)}, T_A = -40^{\circ}C$	-	±2.6	_	%
		I _P = 0 A, T _A = 25°C	_	±6	_	mV
Offset Voltage Error	V _{OE}	I _P = 0 A, T _A = 125°C	_	±23	_	mV
		I _P = 0 A, T _A = -40°C	_	±24	_	mV
LIFETIME DRIFT	•		•			
Total Error Including Lifetime Drift	E _{TOT(DRIFT)}	$I_P = I_{P(MAX)}$, $T_A = -40$ °C to 125°C	_	±3.4	_	% FS
Sensitivity Error Including Lifetime Drift	E _{SENS(DRIFT)}	$I_P = I_{P(MAX)}, T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	_	±3.7	_	%
Offset Voltage Error Including Lifetime Drift	V _{OE(DRIFT)}	$I_P = 0 \text{ A}, T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	_	±31	_	mV

^[1] Typicals values are the mean ± 3 sigma of production distributions. These are formatted as mean ± 3 sigma.

^[2] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

XtremeSense™ TMR Current Sensor with Ultra-Low Noise and <3% Total Error

CT416-xSN830MR: ± 30 A – PERFORMANCE CHARACTERISTICS: Valid for V_{CC} = 3.0 to 3.6 V, C_{BYP} = 1.0 μ F, and T_A = -40° C to 125°C, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Unit
Current Range	I _{RANGE}		-30	_	30	Α
Voltage Output Quiescent	V _{OQ}	$T_A = 25$ °C, $I_P = 0$ A	1.645	1.650	1.655	V
Sensitivity	S	$I_{RANGE(MIN)} < I_{P} < I_{RANGE(MAX)}$	_	33.3	-	mV/A
Bandwidth [1]	f _{BW}	Small Signal = -3 dB	_	1.0	-	MHz
Noise [1]	e _N	$T_A = 25^{\circ}C$, $f_{BW} = 100 \text{ kHz}$	_	12.5	_	mA _{RMS}
OUT ACCURACY PERFORMANCE						
Total Output Error	E _{TOT}	I_P sweep from $I_{P(MIN)}$ to $I_{P(MAX)}$	_	_	±3.0	% FS
Linearity Error	E _{LIN}	$I_P = I_{P(MAX)}, T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	_	±0.2	-	% FS
		$I_P = I_{P(MAX)}, T_A = 25^{\circ}C$	_	±0.3	-	%
Sensitivity Error	E _{SENS}	$I_{P} = I_{P(MAX)}, T_{A} = 125^{\circ}C$	_	±2.3	-	%
		$I_P = I_{P(MAX)}, T_A = -40^{\circ}C$	_	±2.4	-	%
		I _P = 0 A, T _A = 25°C	_	±6	-	mV
Offset Voltage Error	V _{OE}	I _P = 0 A, T _A = 125°C	_	±16	-	mV
		I _P = 0 A, T _A = -40°C	_	±27	_	mV
LIFETIME DRIFT						
Total Error Including Lifetime Drift	E _{TOT(DRIFT)}	$I_P = I_{P(MAX)}, T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	_	±2.8	_	% FS
Sensitivity Error Including Lifetime Drift	E _{SENS(DRIFT)}	$I_{P} = I_{P(MAX)}, T_{A} = -40^{\circ}C \text{ to } 125^{\circ}C$	_	±3.5	_	%
Offset Voltage Error Including Lifetime Drift	V _{OE(DRIFT)}	$I_P = 0 \text{ A}, T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	_	±33	_	mV

^[1] Typicals values are the mean ± 3 sigma of production distributions. These are formatted as mean ± 3 sigma.

^[2] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

XtremeSense™ TMR Current Sensor with Ultra-Low Noise and <3% Total Error

CT416-xSN850DR: 0 to 50 A – PERFORMANCE CHARACTERISTICS: Valid for V_{CC} = 3.0 to 3.6 V, C_{BYP} = 1.0 μ F, and T_A = -40°C to 125°C, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Unit
Current Range	I _{RANGE}		0	_	50	Α
Voltage Output Quiescent	V _{OQ}	$T_A = 25$ °C, $I_P = 0$ A	0.645	0.650	0.655	V
Sensitivity	S	$I_{RANGE(MIN)} < I_{P} < I_{RANGE(MAX)}$	_	40	-	mV/A
Bandwidth [1]	f _{BW}	Small Signal = -3 dB	_	1.0	-	MHz
Noise [1]	e _N	$T_A = 25^{\circ}C$, $f_{BW} = 100 \text{ kHz}$	_	11.0	_	mA _{RMS}
OUT ACCURACY PERFORMANCE						
Total Output Error	E _{TOT}	I_P sweep from $I_{P(MIN)}$ to $I_{P(MAX)}$	_	_	±3.0	% FS
Linearity Error	E _{LIN}	E_{LIN} $I_P = I_{P(MAX)}, T_A = -40^{\circ}C \text{ to } 125^{\circ}C$		±0.2	_	% FS
	E _{SENS}	$I_P = I_{P(MAX)}, T_A = 25^{\circ}C$	_	±0.3	_	%
Sensitivity Error		$I_P = I_{P(MAX)}, T_A = 125$ °C	-	±2.4	-	%
		$I_P = I_{P(MAX)}, T_A = -40^{\circ}C$	_	±2.1	-	%
		I _P = 0 A, T _A = 25°C	_	±6	-	mV
Offset Voltage Error	V _{OE}	I _P = 0 A, T _A = 125°C	_	±23	-	mV
		I _P = 0 A, T _A = -40°C	_	±20	_	mV
LIFETIME DRIFT						
Total Error Including Lifetime Drift	E _{TOT(DRIFT)}	$I_P = I_{P(MAX)}, T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	_	±3.1	_	% FS
Sensitivity Error Including Lifetime Drift	E _{SENS(DRIFT)}			±3.3	_	%
Offset Voltage Error Including Lifetime Drift	V _{OE(DRIFT)}	$I_P = 0 \text{ A}, T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	_	±27	_	mV

^[1] Typicals values are the mean ± 3 sigma of production distributions. These are formatted as mean ± 3 sigma.

^[2] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

XtremeSense™ TMR Current Sensor with Ultra-Low Noise and <3% Total Error

CT416-xSN850MR: \pm 50 A - PERFORMANCE CHARACTERISTICS: Valid for V_{CC} = 3.0 to 3.6 V, C_{BYP} = 1.0 μ F,

and $T_A = -40$ °C to 125°C, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Unit
Current Range	I _{RANGE}		-50	_	50	Α
Voltage Output Quiescent	V _{OQ}	$T_A = 25$ °C, $I_P = 0$ A	1.645	1.650	1.655	V
Sensitivity	S	$I_{RANGE(MIN)} < I_{P} < I_{RANGE(MAX)}$	_	20	-	mV/A
Bandwidth [1]	f _{BW}	Small Signal = -3 dB	_	1.0	_	MHz
Noise [1]	e _N	T _A = 25°C, f _{BW} = 100 kHz	_	19.0	_	mA _{RMS}
OUT ACCURACY PERFORMANCE						
Total Output Error	E _{TOT}	I _P sweep from I _{P(MIN)} to I _{P(MAX)}	_	_	±3.0	% FS
Linearity Error	E _{LIN}	$I_P = I_{P(MAX)}, T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	_	±0.2	_	% FS
		I _P = I _{P(MAX)} , T _A = 25°C	_	±0.3	_	%
Sensitivity Error	E _{SENS}	I _P = I _{P(MAX)} , T _A = 125°C	_	±2.7	_	%
		$I_P = I_{P(MAX)}, T_A = -40$ °C	_	±2.7	-	%
		I _P = 0 A, T _A = 25°C	_	±5	_	mV
Offset Voltage Error	V _{OE}	I _P = 0 A, T _A = 125°C	_	±22	_	mV
		I _P = 0 A, T _A = -40°C	_	±25	_	mV
LIFETIME DRIFT						•
Total Error Including Lifetime Drift	E _{TOT(DRIFT)}	$I_P = I_{P(MAX)}, T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	_	±2.8	_	% FS
Sensitivity Error Including Lifetime Drift	E _{SENS(DRIFT)}	$I_P = I_{P(MAX)}, T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	_	±3.7	_	%
Offset Voltage Error Including Lifetime Drift	V _{OE(DRIFT)}	I _P = 0 A, T _A = -40°C to 125°C - ±32		_	mV	

^[1] Typicals values are the mean ±3 sigma of production distributions. These are formatted as mean ±3 sigma.

^[2] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

XtremeSense™ TMR Current Sensor with Ultra-Low Noise and <3% Total Error

CT416-xSN865DR: 0 to 65 A – PERFORMANCE CHARACTERISTICS: Valid for V_{CC} = 3.0 to 3.6 V, C_{BYP} = 1.0 μ F, and T_A = -40°C to 125°C, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Unit
Current Range	I _{RANGE}		0	_	65	Α
Voltage Output Quiescent	V _{OQ}	$T_A = 25^{\circ}C, I_P = 0 A$	0.645	0.650	0.655	V
Sensitivity	S	$I_{RANGE(MIN)} < I_{P} < I_{RANGE(MAX)}$	_	30.8	_	mV/A
Bandwidth [1]	f _{BW}	Small Signal = -3 dB	_	1.0	_	MHz
Noise [1]	e _N	T _A = 25°C, f _{BW} = 100 kHz	_	11.5	_	mA _{RMS}
OUT ACCURACY PERFORMANCE						
Total Output Error	E _{TOT}	I_P sweep from $I_{P(MIN)}$ to $I_{P(MAX)}$	-	_	±3.0	% FS
Linearity Error	E _{LIN}	$I_P = I_{P(MAX)}, T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	_	±0.2	_	% FS
Sensitivity Error	E _{SENS}	$I_P = I_{P(MAX)}, T_A = 25^{\circ}C$	-	±0.4	_	%
		I _P = I _{P(MAX)} , T _A = 125°C	-	±3.6	_	%
		$I_P = I_{P(MAX)}, T_A = -40^{\circ}C$	-	±2.3	_	%
		I _P = 0 A, T _A = 25°C	_	±4	_	mV
Offset Voltage Error	V _{OE}	I _P = 0 A, T _A = 125°C	_	±10	_	mV
		I _P = 0 A, T _A = -40°C	_	±18	_	mV
LIFETIME DRIFT	•		•			
Total Error Including Lifetime Drift	E _{TOT(DRIFT)}	$I_P = I_{P(MAX)}, T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	_	±3.6	_	% FS
Sensitivity Error Including Lifetime Drift	E _{SENS(DRIFT)}			±4.0	_	%
Offset Voltage Error Including Lifetime Drift	V _{OE(DRIFT)}	$I_P = 0 \text{ A}, T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	_	±25	_	mV

^[1] Typicals values are the mean ± 3 sigma of production distributions. These are formatted as mean ± 3 sigma.

^[2] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

XtremeSense™ TMR Current Sensor with Ultra-Low Noise and <3% Total Error

CT416-xSN865MR: \pm 65 A - PERFORMANCE CHARACTERISTICS: Valid for V_{CC} = 3.0 to 3.6 V, C_{BYP} = 1.0 μ F,

and $T_A = -40$ °C to 125°C, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ. [1]	Max.	Unit
Current Range	I _{RANGE}		-65	_	65	Α
Voltage Output Quiescent	V _{OQ}	$T_A = 25$ °C, $I_P = 0$ A	1.645	1.650	1.655	V
Sensitivity	S	$I_{RANGE(MIN)} < I_{P} < I_{RANGE(MAX)}$	-	15.4	-	mV/A
Bandwidth [1]	f _{BW}	Small Signal = -3 dB	_	1.0	-	MHz
Noise [1]	e _N	T _A = 25°C, f _{BW} = 100 kHz	_	19.0	-	mA _{RMS}
OUT ACCURACY PERFORMANCE						
Total Output Error	E _{TOT}	I _P sweep from I _{P(MIN)} to I _{P(MAX)}	_	_	±3.0	% FS
Linearity Error	E _{LIN}	$I_P = I_{P(MAX)}, T_A = -40$ °C to 125°C	_	±0.2	_	% FS
		$I_P = I_{P(MAX)}, T_A = 25^{\circ}C$	_	±0.6	_	%
Sensitivity Error	E _{SENS}	I _P = I _{P(MAX)} , T _A = 125°C	_	±2.3	-	%
		$I_P = I_{P(MAX)}, T_A = -40^{\circ}C$	_	±1.7	-	%
		I _P = 0 A, T _A = 25°C	_	±5	-	mV
Offset Voltage Error	V _{OE}	I _P = 0 A, T _A = 125°C	_	±17	_	mV
		I _P = 0 A, T _A = -40°C	_	±20	_	mV
LIFETIME DRIFT	*				•	
Total Error Including Lifetime Drift	E _{TOT(DRIFT)}	$I_P = I_{P(MAX)}, T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	_	±2.3	_	% FS
Sensitivity Error Including Lifetime Drift	E _{SENS(DRIFT)}	$I_P = I_{P(MAX)}, T_A = -40$ °C to 125°C	_	±3.0	_	%
Offset Voltage Error Including Lifetime Drift	V _{OE(DRIFT)}	$I_P = 0 \text{ A}, T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	_	±27	-	mV

^[1] Typicals values are the mean ±3 sigma of production distributions. These are formatted as mean ±3 sigma.

^[2] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.

FUNCTIONAL DESCRIPTION

Overview

The CT416 is a high accuracy contact current sensor with an integrated current-carrying conductor that handles up to 65 A. It has high sensitivity and a wide dynamic range with excellent accuracy (low total output error) across temperature. This current sensor supports eight current ranges:

0 to 20 A
 ±20 A
 0 to 50 A
 ±50 A
 0 to 65 A
 ±30 A
 ±65 A

When current is flowing through the current-carrying conductor, the XtremeSense TMR sensors inside the chip senses the field which in turn generates differential voltage signals that then goes through the Analog Front-End (AFE) to output a current measurement with less than $\pm 1.0\%$ full-scale total output error (E_{OUT}).

The chip is designed to enable a fast response time of 300 ns for the current measurement from the OUT pin as the bandwidth for the CT416 is 1.0 MHz. Even with a high bandwidth, the chip consumes a minimal amount of power.

Linear Output Current Measurement

The CT416 provides a continuous linear analog output voltage which represents the current measurement. The output voltage range of OUT is from 0.65 to 2.65 V with a $V_{\rm OQ}$ of 0.65 V and 1.65 V for unidirectional and bidirectional currents, respectively. Figure 11 illustrates the output voltage range of the OUT pin as a function of the measured current.

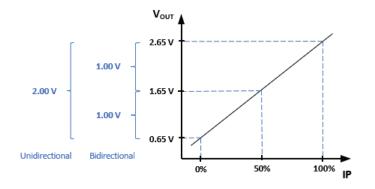


Figure 11: Linear Output Voltage Range (OUT) vs.

Measured Current (IP)

Filter Function (FILTER)

The CT416 has a pin for the FILTER function which will enable it to improve the noise performance by changing the cutoff frequency. The bandwidth of the CT416 is 1.0 MHz; however, adding a capacitor to the FILTER pin—which will be in-series with an internal resistance of approximately 15 k Ω —will set the cutoff frequency to reduce noise.

Experimentally measured Bandwidth does not necessarily match the calculated bandwidth value obtained by using the equation $f_{BW} = \frac{1}{2\pi RC}$ because of the parasitic capacitances due to PCB manufacturing and layout. This is further impacted by the small, picofarad level $C_{\rm FILTER}$ recommendations.

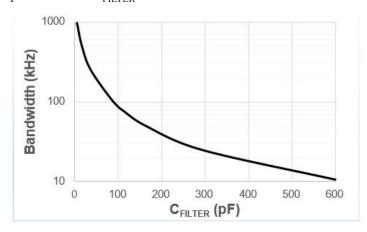


Figure 12: Experimental Bandwidth vs. C_{FILTER} Sensitivity

Sensitivity (S) is a change in the CT416 output in response to a change in 1 A of current flowing through the current-carrying conductor. It is defined by the product of the magnetic circuit sensitivity (G/A, where 1.0~G=0.1~mT) and the chip linear amplifier gain (mV/G). Therefore, the result of this gives a sensitivity unit of mV/A. The CT416 is factory-calibrated to optimize the sensitivity for the full scale of the device dynamic range.

Total Output Error

The Total Output Error (E_{OUT}) is the maximum deviation of the sensor output from the ideal sensor transfer curve over the full temperature range relative to the sensor full scale.

The Total Output Error is measured by performing a full-scale primary current (IP) sweep and measuring $V_{\rm OUT}$ at multiple points.

$$E_{OUT} = 100 * \frac{\max(V_{OUT_{IDEAL}}(I) - V_{OUT}(I))}{F.S.}$$

The Ideal Transfer Curve is calculated based on datasheet parameters as described below.

$$V_{OUT_{IDEAL}}(I_P) = V_{OQ} + S * I_P$$

 E_{OUT} incorporates all sources of error and is a function of the sensed current (I_p) from the current sensor.

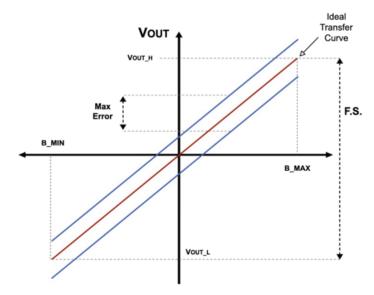


Figure 13: Total Output Error (EOUT) vs. Sensed Current (IP)

The CT416 achieves a total output error (E_{OUT}) that is less than $\pm 3.0\%$ of Full-Scale (FS) over supply voltage and temperature. It is designed with innovative and proprietary TMR sensors and circuit blocks to provide very accurate current measurements regardless of the operating conditions.

Sensitivity Error

The sensitivity error (E_{SENS}) is the sensitivity temperature drift error for unipolar or DC current. It is calculated using the equation below:

$$E_{SENS} = 100 \times \left(\frac{S_{MEASURED}}{S} - 1\right)$$

For bipolar or AC current, the E_{SENS} is calculated by dividing the equation by 2.

Power-On Time (t_{ON})

Power-On Time ($t_{\rm ON}$) of 100 μs is the amount of time required by CT416 to start up, fully power the chip, and becoming fully operational from the moment the supply voltage is applied to it. This time includes the ramp-up time and the settling time (within 10% of steady-state voltage under an applied magnetic field) after the power supply has reached the minimum $V_{\rm CC}$.

Response Time (t_{RESPONSE})

Response Time ($t_{RESPONSE}$) of 300 ns for the CT416 is the time interval between the following terms:

- 1. When the primary current signal reaches 90% of its final value.
- 2. When the chip reaches 90% of its output corresponding to the applied current.

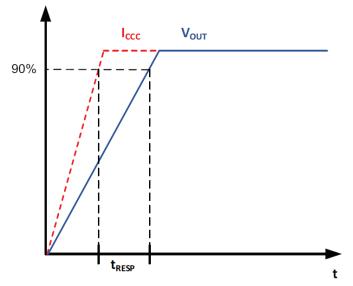


Figure 14: CT416 Response Time Curve

Rise Time (t_{RISE})

Rise Time (t_{RISE}) is the time interval of when it reaches 10% and 90% of the full-scale output voltage. The t_{RISE} of the CT416 is 200 ns.

Propagation Delay (t_{DELAY})

Propagation Delay (t_{DELAY}) is the time difference between these two events:

1. When the primary current reaches 20% of its final value

2. When the chip reaches 20% of its output corresponding to the applied current.

The CT416 has a propagation delay of 250 ns.

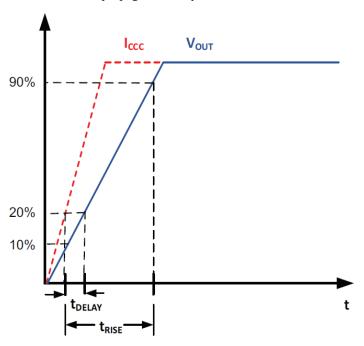


Figure 15: CT416 Propagation Delay and Rise Time Curve

Undervoltage Lockout (UVLO)

The Undervoltage Lockout protection circuitry of the CT416 is activated when the supply voltage (V_{CC}) falls below 2.45 V. The CT416 remains in a low quiescent state until V_{CC} rises above the UVLO threshold (2.50 V). In this condition where V_{CC} is less than 2.45 V and UVLO is triggered, the output from the CT416 is not valid. Once V_{CC} rises above 2.50 V then the UVLO is cleared.

Immunity to Common Mode Fields

The CT416 is housed in a custom plastic package that uses a U-shaped leadframe to reduce the common mode fields generated as current flows through the current-carrying conductor. With the U-shaped leadframe, the stray fields cancel one another thus reducing electromagnetic interference (EMI).

Also, a good PCB layout of the CT416 will optimize performance and reduce EMI. See the Applications Information section in this datasheet for recommendations on PCB layout.

Creepage and Clearance

Two important terms as it relates to isolation provided by the package are: creepage and clearance. Creepage is defined as the shortest distance across the surface of the package from one side the leads to the other side of the leads. The definition for clearance is the shortest distance between the leads of opposite side through the air.

Application

The CT416 is an integrated contact current sensor that can be used in many applications from measuring current in power supplies to motor control to overcurrent fault protection. It is a plugand-play solution in that no calibration is required, and it outputs to a microcontroller a simple linear analog output voltage which corresponds to a current measurement value.

It is designed to support an operating voltage range of 3.3 to 3.6 V, but it is ideal to use a 3.3 V power supply where the output tolerance is less than $\pm 5\%$.

Bypass Capacitor

A single 1.0 μ F capacitor is needed for the VCC pin to reduce the noise from the power supply and other circuits. This capacitor should be placed as close as possible to the CT416 to minimize inductance and resistance between the two devices.

Filter Capacitor

A capacitor may be added to the FILTER pin of the CT416 if there is a requirement to improve the noise performance. The capacitor will be connected to an internal resistor of 15 k Ω inside the chip to form a R-C filter. This R-C filter produces a cutoff frequency that will reduce the noise over this lower bandwidth.

If the filtering function is not required, then the FILTER pin should be left unconnected (No Connect).

Recommended PCB Layout

Since the CT416 can measure up to 65 A of current, special care must be taken in the printed circuit board (PCB) layout of the CT416 and the surrounding circuitry. It is recommended that the CCC pins be connected to as much copper area as possible. It is also recommended that 2 oz. or heavier copper be used for PCB traces when the CT416 is used to measure up to 30 A of current. Additional layers of the PCB should also be used to carry current and be connected using the arrangement of vias. Figure 16 and Figure 17 show the recommended the PCB layout for the 20 A and 30 A variants of CT416.

For the 65 A variant, it is recommended that 4 oz. of copper be used for the PCB traces.

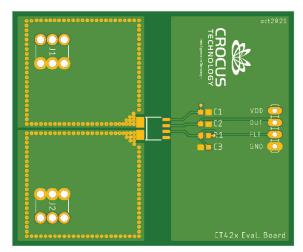


Figure 16: Recommended PCB Layout (Top Layer) for the 20 A to 65 A variants of the CT416

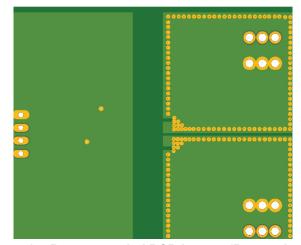


Figure 17: Recommended PCB Layout (Bottom Layer) for the 20 A to 65 A variants of the CT416

Thermal Rise vs. Primary Current

Self-heating due to the flow of current should be considered during the design of any current sensing system. The sensor, printed circuit board (PCB), and contacts to the PCB will generate heat as current moves through the system.

The thermal response is highly dependent on PCB layout, copper thickness, cooling techniques, and the profile of the injected current.

The current profile includes peak current, current on-time, and duty cycle. While the data presented in this section was collected with direct current (DC), these numbers may be used to approximate thermal response for both AC signals and current pulses.

The plot in Figure 18 shows the measured rise in steady-state die temperature of the current sensor versus continuous current at an ambient temperature, T_A , of 25 °C. The thermal offset curves may be directly applied to other values of T_A .

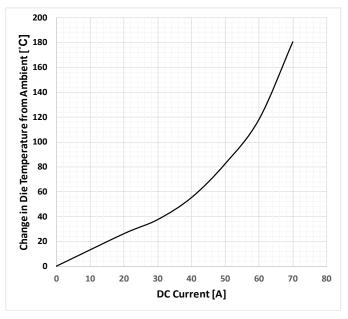


Figure 18: Self Heating in the LA Package Due to Current Flow

PACKAGE OUTLINE DRAWING

For Reference Only - Not for Tooling Use

Dimensions in millimeters - NOT TO SCALE

Dimensions exclusive of mold flash, gate burs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown

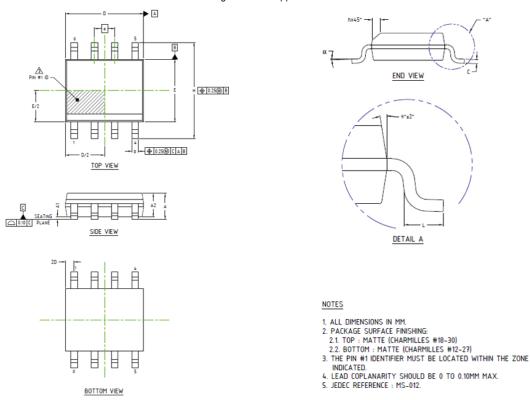


Figure 19: SOIC-8 Package Drawing and Dimensions

Table 2: CT416 SOIC-8 Package Dimensions

Symbol	Dimensions in Millimeters (mm)					
Symbol	Min.	Тур.	Max.			
A1	0.10	0.18	0.25			
b	0.36	0.41	0.46			
С	0.19	0.22	0.25			
D	4.80	4.89	4.98			
E	3.81	3.90	3.99			
е	1.27 BSC					
Н	5.80	6.00	6.20			
h	0.25	0.37	0.50			
L	0.41	_	1.27			
А	1.52	1.62	1.72			
α	0°	_	8°			
ZD	0.53 REF					
A2	1.37	1.37 1.47 1.5				

TAPE AND REEL POCKET DRAWING AND DIMENSIONS

For Reference Only - Not for Tooling Use

Dimensions in millimeters – NOT TO SCALE

Dimensions exclusive of mold flash, gate burs, and dambar protrusions

Exact case and lead configuration at supplier discretion within limits shown

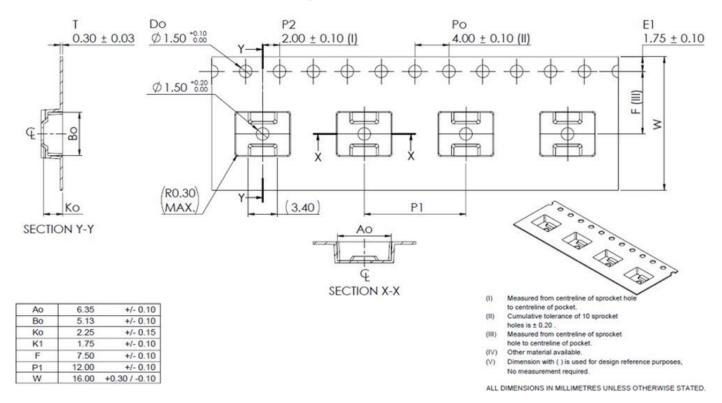


Figure 20: Tape and Pocket Drawing for SOIC-8 Package

PACKAGE INFORMATION

Table 3: CT416 Package Information

Part Number	Package Type	# of Leads	Package Quantity	Lead Finish	MSL Rating ^[2]	Operating Temperature (°C) [3]	Device Marking ^[4]
CT416-HSN820DR	SOIC	8	2000	Sn	3	-40 to 125	CT416 S820DR YYWWLL
CT416-ASN820DR	SOIC	8	2000	Sn	3	-40 to 125	CT416A S820DR YYWWLL
CT416-HSN820MR	SOIC	8	2000	Sn	3	-40 to 125	CT416 S820MR YYWWLL
CT416-ASN820MR	SOIC	8	2000	Sn	3	-40 to 125	CT416A S820MR YYWWLL
CT416-HSN830DR	SOIC	8	2000	Sn	3	-40 to 125	CT416 S830DR YYWWLL
CT416-ASN830DR	SOIC	8	2000	Sn	3	-40 to 125	CT416A S830DR YYWWLL
CT416-HSN830MR	SOIC	8	2000	Sn	3	-40 to 125	CT416 S830MR YYWWLL
CT416-ASN830MR	SOIC	8	2000	Sn	3	-40 to 125	CT416A S830MR YYWWLL
CT416-HSN850DR	SOIC	8	2000	Sn	3	-40 to 125	CT416 S850DR YYWWLL
CT416-ASN850DR	SOIC	8	2000	Sn	3	-40 to 125	CT416A S850DR YYWWLL
CT416-HSN850MR	SOIC	8	2000	Sn	3	-40 to 125	CT416 S850MR YYWWLL
CT416-ASN850MR	SOIC	8	2000	Sn	3	-40 to 125	CT416A S850MR YYWWLL
CT416-HSN865DR	SOIC	8	2000	Sn	3	-40 to 125	CT416 S865DR YYWWLL
CT416-ASN865DR	SOIC	8	2000	Sn	3	-40 to 125	CT416A S865DR YYWWLL
CT416-HSN865MR	SOIC	8	2000	Sn	3	-40 to 125	CT416 S865MR YYWWLL
CT416-ASN865MR	SOIC	8	2000	Sn	3	-40 to 125	CT416A S865MR YYWWLL

^[1] RoHS is defined as semiconductor products that are compliant to the current EU RoHS requirements. It also will meet the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Green is defined as the content of chlorine (CI), bromine (Br), and antimony trioxide based flame retardants satisfy JS709B low halogen requirements of ≤ 1,000 ppm.

^[2] MSL Rating = Moisture Sensitivity Level Rating as defined by JEDEC standard classifications.

^[3] Package will withstand ambient temperature range of -40°C to 125°C and storage temperature range of -65°C to 150°C.

^[4] Device Marking for CT416 is defined as CT416 S8xxZR YYWWLL where the first 2 lines = part number, YY = year, WW = work week, and LL = lot code.

DEVICE MARKING

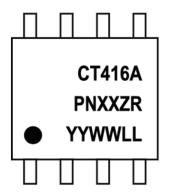
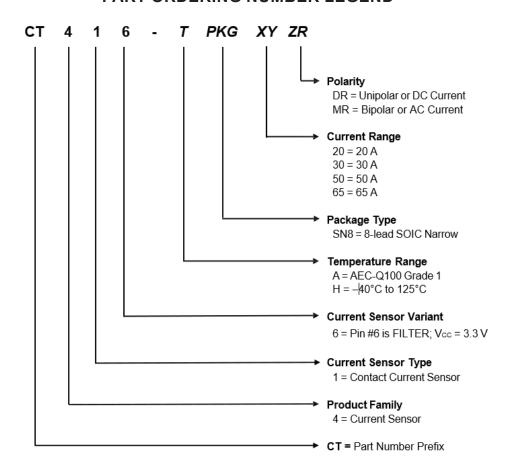


Figure 21: CT416 Device Marking for 8-lead Package


Table 4: CT416 Device Marking Definition for 8-lead SOIC Package Row No. Code Definition 3 Pin 1 Indicator CT416 1 Allegro Part Number 1 Α AEC-Q100 Qualified 2 Ρ Package Type 2 Ν Number of Pins 2 XX **Current Range** 2 ZR Polarity ΥY 3 Calendar Year 3 WW Work Week

Lot Code

PART ORDERING NUMBER LEGEND

3

LL

XtremeSense™ TMR Current Sensor with Ultra-Low Noise and <3% Total Error

Revision History

Number	Date	Description
2	November 2, 2023	Document rebranded and minor editorial updates
3	April 15, 2024	Updated Description and Features and Benefits (page 1); updated Table of Contents (page 2); removed Thermal Characteristics table (page 3); removed IEC 61000 reference (pages 1 and 3); updated Isolation Ratings table (page 4); added Thermal Rise vs. Primary Current section (page 20).
4	April 29, 2024	Updated Primary Conductor Resistance value (page 6).
5	July 16, 2024	Updated package drawings and tape and reel pocket drawings reference designations (pages 21 and 22).
6	March 27, 2025	Updated product status to not for new design (cover sheet) and removed reference to evaluation board from table of contents (page 2)

Copyright 2025, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

www.allegromicro.com

