

APEK89301

A89301 Evaluation Board User Guide

DESCRIPTION

The A89301 evaluation board is designed to aid system designers in evaluating the operation and performance of the A89301 motor controller IC. This user guide provides stepby-step instructions on how to use the A89301 evaluation board to program the Allegro A89301 motor controller IC. In addition, this document contains feature descriptions that are not shown in the A89301 datasheet.

FEATURES

- USB communications to allow a GUI to control the device via $\mathrm{I}^2\mathrm{C}$
- Programs devices to control a motor

EVALUATION BOARD CONTENTS

• APEK89301GES-01-T evaluation board

Figure 1: A89301 Evaluation Board

Table of Contents

Description	
Features	1
Evaluation Board Contents	1
Using the Evaluation Board	
Other Operating Features of A89301	
Schematic	
Layout	39
Bill of Materials	
Related Links	
Application Support	
Revision History	
-	

Table 1: A5947GET Evaluation Board Configurations

Configuration Name	Part Number
APEK89301GES-01-T	A89301GESSR

USING THE EVALUATION BOARD

Equipment Required

- Motor
- Voltage supply to power motor
- Standard A Male to Mini B Male USB cable (not included)
- Personal computer for USB control
- Software; see Related Links

Step 1: Make Evaluation Board Connections.

- A. Connect USB cable to computer.
- B. Connect power cables to VBBIN and GND.
- C. Set the switch to U1 PROG.
- D. Set JMP2 to upper position.
- E. Do <u>not</u> connect motor phases SA, SB, SC yet.*
- F. Turn on power to rated voltage.

* The default settings in the A89301 may not be appropriate, which could cause damage to the IC or motor. Settings should be verified before connecting a motor.

Step 2: Launch the GUI.

A89301 Application	(Version 1.8) - <no fil<="" th=""><th>ename specified></th><th>1.100</th><th>1.00</th><th></th><th></th><th>l</th><th></th></no>	ename specified>	1.100	1.00			l	
Save/Open Configurat	ion Text Size Appli	cation Info Disclaimer	Categoad dam	and via 120				
Read EEPROM and	Write all settings to	Toggle Run/Stop	100.0% speed den	nand	Read	Continuous read	Setting PWM reg to 0	-
Show Settings	LEFROM	r			Speed = Current =		Wrote to 81 : 0x2200 (8704))
Seneral Advanced	Standby / Protection Cl	S Status IPD Lock	Detect Startun test		Show plot	Show gauge	Read from 81 : 0x2200 (8704)	
Advanced	Standby / Protection Ch		Detect Startup test					
Pole pairs 4	(used only for calc the settings file but	ulations here; saved in not saved in EEPROM)	Acceleration	0		= 5.75 Hz/s		
Rated voltage	0	= 11.6 V	Acceleration range	(Hz/s) 🖲 0 to 1	2.75 🔘	0 to 816		
Dated speed	0	00.411-	Speed control	Open loop	Close	d loop		
Rated speed	0	= 69.4 HZ = 1041.5 RPM	Direction	C ACB	ABC			
			SPD input mode	Digital	Analo	g		
Motor resistance	0	= 1.02 ohms	Digital speed input	PWM	Clock (for c	mode - freq to speed losed loop only)		
Rated current		= 1 864 A	PWM input freq	> 2.8 kHz	◎ <= 2.8	3 kHz		
	~		Speed response		0	2.00 sec		
Startup current (relative to	1/4x (466 mA)	3/8x (699 mA)	Speed input	0 10%	0 69/			
rated current)	I/2x (932 mA)	5/8x (1.17 A)	OFF threshold	0 15%	0 20%			-
	3/4X (1.40 A)	0 //8x (1.63 A)	(ON = setting+2%)	0	0			
	(1.00A)		rg function	Normal FG	Disab	oled, i2C mode	Alleon	n •—
Max start current	Disabled	Enabled						roSystems, LLC

Step 2: Launch the GUI. (continued)

Step 3: Load saved parameters, if previously saved.

Device parameters can be saved to a file. If a file for this (or similar) application has been created, open that file. Verify the Allegroonly bits in the file are their default values.

۹.	A89301 Application (Version 1.6) - < no filename specified>	В.	A89301_Application	×
	Save/Open Configuration Text Size Application Info Disclaimer Save this configuration to a file Open device configuration file Destors EEDDOM to default configuration		Before opening a file, do you want to save the current configuration to <no filename="" specified=""> ?</no>	
	Restore EERROM to default configuration General Advanced Standby / Protection Status IPD Lock Detect Pole pairs 4 (used only for calculations here; saved in the settings file but not saved in EEPROM) Ac		Yes No Cancel	
с.	20 Open × ← → × ↑ ≪ Documents > New folder > Organize ▼ New folder > ★ Quick access □ Saved Settings.89301 □ ■ Desktop □ □	D.	Loaded C:\Files\mySetting.89301 In this file: Allegro-only bits are default.	
	File game: Saved Settings.89301 B9301 files (*.89301) V Qpen Cancel			
Ε.	Save/Open Configuration Text Size Read EEPROM and Write all settings to show settings	F.	22 . UXU25E (000) 23 : (skipped) EEPROM data was verified OK	

Step 4: Configure the basic parameters.

Note: These numbers do not need to be very accurate; use the best estimation. There is fine tuning later in the process.

Sense resistor value

= 12.4 mohms

In the "Advanced" page, there is a parameter defining the current sensing resistor value. Program this value appropriately.

Step 5: Start the motor.

- A. Connect motor phase A, B, and C.
- **B.** Keep 'Set speed demand via I2C' checked.
- **C.** Select the speed demand to 50%, and click Toggle Run/Stop.

Step 6: If motor does not move at all:

A. Look at the LED indicator connected to the Fault pin, and follow the fault table to determine the root cause.

B. If the LED is off, connect a current probe and voltage probe to the motor outputs and check if there is any current / voltage output to the motor phase. If there is voltage but no current, check motor phase connections.

Lock detected	low	constant on
OCP	0.67s high	slow flashing
	0.67s low	
OTP	0.67s low	long-short-short
	0.17s high	flashing
	0.08s low	
	0.17s high	
	0.08s low	
	0.17s high	
system error	0.08s low	double short
	0.08s high	flashing
	0.08s low	
	1.09s high	
OVP	0.17s high	fast flashing
	0.17s low	
zero speed	0.25s high	long-short
demand	0.08s low	flashing
	0.34s high	
	0.67s low	

C. If the fault indicator LED is showing the "zero speed demand", double check the I2C speed demand setting is correct.

D. Toggle Run/Stop to retry startup.

Step 7: If motor shakes a little and stops:

A. Look at the LED indicator connected to the Fault pin, and follow the fault table to determine the root cause.

Acceleration

Acceleration range

B. If it is OCP, check the phase output wire connections.

C. Otherwise, it is likely lock detection. If so, lower/slow down the acceleration setting. Note there are two acceleration ranges.

D. Toggle Run/Stop to retry the startup.

Lock detected	low	constant on
ОСР	0.67s high	slow flashing
	0.675 IOW	
OTP	0.67s low	long-short-short
	0.17s high	flashing
	0.08s low	
	0.17s high	
	0.08s low	
	0.17s high	
system error	0.08s low	double short
	0.08s high	flashing
	0.08s low	
	1.09s high	
OVP	0.17s high	fast flashing
	0.17s low	_
zero speed	0.25s high	long-short
demand	0.08s low	flashing
	0.34s high	-
	0.67s low	

0 to 816 Hz/s

= 5.75 Hz/s

$\left(\right)$	Toggle Run/Stop	Set speed demand via I2C
ſ	1	

0 to 12.75

Step 8: If motor spins more than 5 cycles and stops:

A. Look at the LED indicator connected to the Fault pin, and follow the fault table to determine the root cause.

B. The problem is likely lock detection. If so, go to the Standby / Protection page and disable all the lock detect features.

-		
Lock detected	low	constant on
OCP	0.67s high	slow flashing
	0.67s low	
OTP	0.67s low	long-short-short
	0.17s high	flashing
	0.08s low	
	0.17s high	
	0.08s low	
	0.17s high	
system error	0.08s low	double short
	0.08s high	flashing
	0.08s low	
	1.09s high	
OVP	0.17s high	fast flashing
	0.17s low	
zero speed	0.25s high	long-short
demand	0.08s low	flashing
	0.34s high	_
	0.67s low	

C. Toggle Run/Stop to retry the startup.

D. One by one, enable each lock detect feature to determine which is the cause of the fault and which can be re-enabled.

Step 9: While the motor is spinning, go to the Status page; click 'Read Status'.

Show plot Sho Advanced Standby / Protection Status IPD Lock Detect **B.** The system diagnostics egisters function will show you IC 0x0000, 0 Motor speed = 0 Hz. 0 RPM temperature, motor Bus current 0x0000, 0 = 0 mA Read Status Continuous Read speed, supply current, = 0 mA 0x0000.0 Q axis current Vbb ADC 0x0000.0 = 0.0 V phase current, and supply Control demand 0x0000, 0 = 0.0 % = -53.0 deg C voltage. Compare the Die Temp Amplitude command 0x0000, 0 = 0.0 % = -63.4 deg F supply current and voltage 0x0000, 0 Phase advance angle = 0 deg State, address 127: data with the result Initial showing on the power Spinning Brake supply. Lock detected

A. While the motor is spinning, go to the Status page. Click 'Read Status'.

C. The **Control demand** is the amplitude that is commanded (it should match the I2C speed demand value). The **Amplitude command** is the actual amplitude provided to the motor phase. If the command is less than the demand, it is because of the current limit. This problem is solved in **Step 11**.

Togole Dun/Ston	Set speed demand via 12		
Toggie Ruinstop	50.1% speed demand		
	\mathbf{V}		

Step 10: Adjust the motor inductance.

A. Motor inductance is difficult to measure—it varies with operation frequency, phase current (saturation), and also with the rotor position. Thus, A89301 provides an easy method to adjust the inductance value and achieve the best efficiency.

	Advanced	
Motor inductance		= 7

- B. While the motor is spinning, connect a current probe to phase A, and connect a voltage probe to phase A.
- C. Enable the open window which is a debug function. Remember to disable the window before finalizing the parameters.

	Advanced	
Open drive	Oisabled	Enabled
Power control enable	Disabled	Enabled
Open window	Disabled	Enabled

Step 10: Adjust the motor inductance. (continued)

- E. It may not be possible to find an inductance value that makes the phase A voltage exactly $V_{BB}/2$. If not, choose the closest setting.
- F. Theoretically, adjusting the inductance value at one speed will work for all other speeds. However, it is recommended to verify at another speed. If it doesn't work at other speed, it is recommended to make the adjustment at rated speed.
- G. For motors running at high speed (> 500 Hz), opening the window may cause a big distortion in the phase current, which can trigger the lock detection. In this case, capture the first window waveform, stop the oscilloscope, and then make the adjustment.
- H. For motors with very low inductance, if the phase current looks like this, set the inductance value to level 0 or 1, and then start the adjustment.
- The Direct drive angle feature bypasses automatic phase angle adjustment. If enabled, the inductor setting slider is used to set the fixed advance angle, in units of degrees.

Step 10: Adjust the motor inductance. (continued)

- J. There is another way to double-confirm the inductance is optimized.
 - Control the motor to a fixed high speed (around 80% of rated speed).
 - Read phase current RMS from scope.
 - Change the inductance setting around the value from the previous step.
 - List the RMS current for each inductance setting and choose the one with smallest RMS current.
 - For example, look at the table, inductance setting 2 will cause the minimum current at fixed speed (3000 rpm). Therefore, choose setting 2.

inductance setting	phase RMS current	motor speed
0	2.35 A	3000 rpm
1	2.25 A	3000 rpm
2	<mark>2.21 A</mark>	3000 rpm
3	2.28 A	3000 rpm
4	2.39 A	3000 rpm

Step 11: Fine tune the general parameters.

- A. Increase the speed demand to 100%, and read the status.
- B. The bus current value should match the actual bus current shown on the power supply or a multi-meter. If not, adjust the sense resistor value slightly (on the advanced page).
- C. The 'Control demand' and 'Amplitude command' should be both 100% (511).

Bus current	0x0000	, 0	= 0 mA	
Sense resistor value				= 12.4 mohms
Toggle Run/	Stop 2 S	Get speed de % speed den	mand via I2C nand	
Control de	emand	0×0000, 0) =	0.0 %
Amplitude con	nmand	0x0000, 0) =	0.0 %

- D. If the 'Amplitude command' is less than 511, go to the general parameter page and increase the 'Rated current' value. The motor speed should increase while the 'Rated current' value is increased.
- E. When the 'Control demand' and 'Amplitude command' are both 511, record the 'Motor speed' from the status page. Enter this value as the 'Rated speed' parameter.
- F. Record the 'Bus current' from the status page. Enter this value as the 'Rated current' parameter.

Step 12: PID Parameters.

- A. Restart the motor.
- B. If the PID parameter is too high or too low, operation will fail. Connect a current probe and voltage probe for the debugging.
- If current shows distortion within in one electrical cycle, the PID parameter is too high.
- If current shows low frequency oscillation, the PID parameter is too low.

Step 13: Startup Mode and Startup Settings.

A. If this is an air purifier type of application which doesn't require zero reverse rotation startup, and startup time is not critical, select 'Align & go'.

Alian & ao

- B. If this is a ceiling fan or pole fan application which strictly requires no reverse rotation at startup, select '2 pulse IPD'.
 - The 'IPD current threshold' must be set high enough so that startup is reliable, and as low as possible to minimize the acoustic noise during IPD.
- C. For some motors, due to manufacturing tolerance (inductance error between phase to phase), the 2 pulse IPD won't be able to detect the initial position reliably. In that case, select '6 pulse IPD'.
- D. If this is a seat cooling fan or pump where faster startup is desirable and slight reverse oscillation at startup is acceptable, select 'Slight move'.
 - Adjust the 'Slight move amplitude demand', and choose the best startup performance. Too high a value will cause severe startup oscillation, and too low a value will cause startup failure.
- E. NOTE 2 explains how to use the GUI's IPD page to test the performance.
- F. Compare these three options in the application and choose the best fit.

Step 13: Startup Mode and Startup Settings. (continued)

G.	A89301 provides 7 options for the startup current. The motor phase current will gradually increase from the programmed value.	Startup current (relative to rated current)	 1/4x (466 mA) 1/2x (932 mA) 3/4x (1.40 A) 1x (1.86 A) 	 3/8x (699 mA) 5/8x (1.17 A) 7/8x (1.63 A)
	If 'Max start current' is enabled, the control demand is ignored, and 100% control demand is always used. The curre	Max start current	Disabled	C Enabled

be limited by the startup current setting.

- H. Reducing the startup current may cause startup to fail in open-loop mode, even if startup was verified successful before the change. In this case, reduce the acceleration accordingly.
- I. If faster startup is required, increase the acceleration value. Startup current may need to be increased accordingly.

Acceleration	0	= 5.75 Hz/s
Acceleration range	() 0 to 12.75	🔘 0 to 816 Hz/s

- J. Note the startup current and acceleration only affects the reliability and startup time. If the motor fails after at least 5 cycles, then changing the startup parameters won't help.
- K. Increasing the first cycle speed will First cycle speed make the startup faster.
- L. Perform a comprehensive test to ensure startup reliability. The GUI provides the startup test tool of reliability test. Refer to <u>Note 4</u>.
 - 1) Different initial position.
 - 2) Different initial speed.
 - 3) Different supply voltage.
 - 4) Different operation temperature.

Step 14: Lock detect parameters.

Note: If there is any issue with lock detect, refer to $\underline{NOTE 3}$ for further debugging.

Step 15: Speed control mode.

- A. The term "Speed Control" is used here, however the motor speed is controlled directly only when "closed-loop speed" is enabled. If it is not enabled, the control setting provided through I2C or the SPD pin is proportional to the output amplitude, which only indirectly changes the motor speed.
- B. So far, I2C has been used for speed (amplitude) control, as it is an easy method for debug. It is not limited to debug use however—the customer can use the I2C mode in final production if there is an MCU (or other type of controller) in the system.
- C. The speed control options are described in the datasheet "Speed Control" section.

Speed input	10%	◎ 6%
OFF threshold	1506	20%
(ON = setting+2%)	0 13%	0 20%

- D. If the demand is less than a threshold, A89301 will not try to spin the motor.
 - For example: 'SPD input mode' is digital, and PWM is selected. The 'Speed input OFF threshold' is set to 10%. Here, 5% PWM will not start the motor, but it won't enter standby mode either. Only a 0% PWM will trigger the standby mode.

Frequency to	 7.00 RPM/Hz
speed ratio	

E. When "clock mode (freq to speed)" is enabled, the frequency to speed ratio is adjustable. The unit of clock input frequency is "Hz", the unit of the speed is "RPM", so the number of pole pairs needs to be programmed correctly before adjust this parameter.

Speed response		2.00 sec
time constant	[11111111111111111111111111111111111111	

F. When "closed loop speed control" is enabled, the speed response time constant is adjustable.

Step 16: Other settings.

Standby mode	Enabled		O Disabled
Delay standly until	stationary	O Disabled	Enabled

A. When speed demand is 0 and SPD pin voltage is low, the IC will enter the standby mode. If Delay standby until stationary is set, the IC will not enter standby until the motor stops rotating. VREF and Charge Pump will be disabled in standby mode. If the application requires VREF when speed demand is zero, disable the standby mode.

Brake mode	Brake when safe	100% uncontrolled
Safe braking	1x (1.86 A)	2x (3.73 A)
(relative to rated)	🔘 4x (7.46 A)	🔘 8x (14.9 A)

- B. When the external Brake button is pressed, A89301 will stop the motor as fast as possible. But because of the potential overstress damage to the MOSFETs, selecting the "Brake when safe" option is recommended. Then system will not apply the brake until the braking current is less than the threshold (calculated by the motor speed). If the hardware design has a big safety margin, choose "100% uncontrolled".
- C. Keep the default OCP parameters unless unexpected overcurrent conditions are experienced.

Step 16: Other settings. (continued)

Open drive	Disabled	Enabled
Power control enable	Disabled	Enabled

- D. 'Open drive' is a debug option which will keep the system in the open-loop (stepper motor) state. In case after all this practice, the motor can't be made to spin, enable the open drive, set the PID parameters to 0, and set the rated speed low. If the motor is able spin slowly in the open loop, the problem is related to PID parameter.
- E. 'Power control enable' is a debug option that will disable the current limit, and accelerate and decelerate buffer. In this mode, speed command will always be the same as speed demand. This will eliminate any current limit related issues.
- F. Remember to set these debug options back to default before finalizing the parameters.

Soft OFF	Enabled	O Disabled
Soft ON	O Disabled	Enabled
Soft off time	○ 1 s	4 s

G. These are the soft-on and soft-off features described in the datasheet.

Step 16: Other settings. (continued)

1.

Accel buffer	None	Fast Slow
Decel buffer	None	Fast Slow

H. The Accel buffer and Decel buffer only affect "open-loop speed control" mode. Keep the default setting if satisfied with the dynamic response of the system. If faster dynamic response is expected, choose fast or no buffer. If the application has a high-inertia motor (ceiling fan), choose slow buffer. Using a faster buffer with a slow system (ceiling fan) may cause lock detect mis-trigger.

Dead time	 = 400ns	Deadtime compensation 0	I
	T I I I I I I		

- J. The dead-time is the period of time between corresponding high- and low-side drivers are disabled and enabled, necessary to prevent shoot-through current if both high- and low-sides are enabled simultaneously. Typically, the default value is appropriate, but increase this time if shoot-though is occurring.
- K. Deadtime compensation can be enabled to reduce the current distortion due to deadtime. Keep it disabled if enabling the compensation makes current waveform worse. (The deadtime compensation may not be suitable for all motors).

Step 17: MOSFET CISS settings (CISS tab).

- A. These parameters are provided to compensate for the MOSFET parasitic input capacitance (C_{ISS}). Higher capacitance and/or lower gate slew rate requires higher compensation. The settings can be selected via the table in the datasheet, or for better accuracy, via the test functionality provided in the application (this method is recommended). To use the app's test functionality:
 - Do not connect anything to the motor terminals A, B, C-keep them floating
 - Push the 'Run / stop test' button
 - Connect the scope channel 1 to the Fault pin, and scope channel 2 to motor terminal A
 - Trigger on the rising edges of channel 2
 - Observe the time period between the alternating rising edges on channel 1 (yellow traces below)
 - Adjust the 'MOSFET CISS compensation rising' slider until the time period is deadtime / 2
 - Now change the trigger to the falling edges of channel 2
 - Observe the time period between the alternating falling edges on channel 1
 - Adjust the 'MOSFET CISS compensation falling' slider until the time period is deadtime / 2

Step 18: Save the settings and write into the EEPROM.

A. Save the configuration to a file.

AMT49406 Application (Version 0).3) - C:\Users\	ylu\Desktop\GUIs\			
Save/Open Configuration	Text Size	Application Ir			
Save this configuration to a file					
Open device configuration file					
Restore EEPROM to default configuration					

B. Press "Write all settings to EEPROM" before shutting down the power.

Write all settings to
EEPROM

C. The Allegro-only bits in EEPROM can be verified by pushing the "Read EEPROM and show settings" button. After reading, the app will show if EEPROM is default and if the Allegro-only bits are default—the Allegro-only bits should always be default. (The default values of Allegro-only bits are shown on the following slide)

Read from 20 : 0x2E2E (11822) Read from 21 : 0xC020 (49184) Read from 22 : 0x925E (37470) EEPROM is NOT default Addresses 20, are different (ignored addr 0,1,2,3,4,5,6,7,23,) Allegro-only bits are default. EEPROM configuration ID (address 10): MJ46

Default values of Allegro-only bits.

The red bits should always be set to the following values. Bits with an 'X' is a user setting and can be set to 0 or 1.

									В	it							
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EE8_REG72	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	EE9_REG73	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	EE10_REG74	Х	Х	Х	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	EE11_REG75	1	Х	0	Х	Х	Х	0	0	Х	Х	Х	0	Х	0	0	0
	EE12_REG76	Х	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	EE13_REG77	0	Х	0	0	0	0	0	1	Х	Х	Х	Х	Х	Х	Х	Х
	EE14_REG78	0	0	0	0	1	1	1	0	0	0	0	Х	0	1	0	1
Address	EE15_REG79	Х	Х	1	1	Х	Х	Х	Х	Х	Х	1	1	Х	Х	0	1
	EE16_REG80	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	EE17_REG81	0	0	1	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	EE18_REG82	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	1	1	0	1
	EE19_REG83	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0
	EE20_REG84	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	EE21_REG85	Х	1	0	0	0	0	Х	Х	Х	Х	Х	0	0	0	0	0
	EE22_REG86	Х	0	0	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

NOTE 1. HOW TO DETERMINE THE NUMBER OF POLES

- A. Connect one motor terminal to the supply, one terminal to ground, and leave the last terminal floating. Increase the supply gradually, making sure the current doesn't become too high (should be about half of the rated current).
- B. This drives the motor to a particular phase. While manually rotating the shaft, count the number of detents (how many places the rotor settles in, or is pulled to) there are in one revolution. The number of detents is the number of pole pairs.

NOTE 2. TESTING THE IPD PERFORMANCE

- A. The IPD performance test is valid for '2-pulse IPD', '6-pulse IPD', and 'Slight-move' modes.
- B. Go to the IPD page, select IPD test stage, enable 'Continuously Read Angle', and push 'Toggle Run/Stop' to start driving.
- C. The motor will not spin but will make some noise. Slowly manually rotate the rotor, and the detected motor position will be shown in the "clock" plot and the "X-Y" plot.
- D. If 'Stage1' is selected (available for '2-pulse IPD' and 'Slight-move' options), the output will successively step up from 45° to 195°, then back to 45°, if spun in target direction. If spun in the opposite direction, the output will successively step down from 195° to 45°, then back to 195°.
- E. If 'Stage1&2' is selected (available for '2-pulse IPD' and '6-pulse IPD' options), the output will successively step up from 15° to 345°, then back to 15°, if spun in target direction. If spun in the opposite direction the output will successively step down from 345° to 15°, then back to 345°.
- F. The 'counter 1' and 'counter 2' are only for '2-pulse IPD' and 'States 1&2' options. In this case, press 'Read 2 pulse counts' button, count 1 and 2 will display the width of the 2 pulses, and the difference will be calculated. The difference is expected to be above 3 or below -3.

NOTE 2. TESTING THE IPD PERFORMANCE (continued)

Make judgments

- A. If the detected motor angle steps are not successive in 'Stage 1' while slowly rotating the rotor (for example, if it jumps from 45° to 135° and then back to 75°), then the '2-pulse IPD' and 'Slight-move' modes are not proper startup modes for this motor. Choose '6-pulse IPD'.
- B. If 'Stage 1' is good, or if '6-pulse IPD' is selected, and the detected motor angle steps are not successive in 'Stage 1&2' while slowly rotating the rotor (for example, if it jumps from 45° to 225° and then back to 45°, and especially when it jumps back and forth 180°), increase the 'IPD current threshold'.
- C. It is normal to have the result move one step (30 degrees) back and forth—this won't affect the startup reliability. See picture on right; this is acceptable.
- D. If 'Stage 1&2' is good, but the difference calculated between pulse 1 and 2 widths is only +/- 0, 1 or 2, we should increase the 'IPD current threshold'.

IPD and VBB Slew Rate

- A. When using either IPD option, the voltage on VBB should be stable within 25 ms after a start signal is applied to the SPD terminal.
- B. This is important when the SPD terminal is biased such that the motor will begin to run immediately when VBB is applied, and the VBB supply slew rate is slow.
- C. If VBB is not stable within 25 ms of application of the start signal, the 'Delay start' option can be set, which extends the delay between the signal on the SPD terminal and motor startup to 100 ms. Note, if this option is enabled, the 100 ms delay is always preset—it is not limited to when applying power to VBB.

Delay start O Disabled

Enabled

NOTE 3. DEBUGGING THE LOCK DETECT FEATURE

General Advanced Standby / Protection Status IPD Lock Detect

- A. Go to "Lock Detect" page to debug lock detection issues. Lock detection issue includes (1) Motor is locked, but IC can't detect the lock, and (2) Motor is running okay, but IC detects a lock by mistake.
- B. Press the 'continuous read' button, and run the motor.
- C. The curve below shows the BEMF lock detect feature. If all the parameters are set correctly, the measured BEMF curve (blue) should be at 100%.
- D. Run the motor at maximum speed (rated voltage, 100% demand, and open loop). Fine tune the rated speed setting, rated current setting (step 11), and sense resistor setting. The blue curve will be near 100%.
- E. At other operating speeds, the blue curve might be slightly off the 100% reference, but as long as it doesn't cross the 50% and 200% thresholds, the motor will operate normally.
- F. If the motor is locked by external force, the blue curve will cross one of the thresholds, and lock detect will be triggered. Step 14 sets the sensitivity of the BEMF lock detect .
- G. During startup, the blue curve will not be between the 50% and 200% thresholds, and this is normal.

NOTE 3. DEBUGGING THE LOCK DETECT FEATURE (continued)

General Advanced Standby / Protection Status IPD Lock Detect

- A. This is primarily for ceiling fan applications with a loose connection (the stator can rotate some).
- B. To debug the vibration lock detect, press the "Threshold high" or "Threshold low" buttons, which will send the vibration detection signal to the "FAULT" pin.
- C. Use an oscilloscope to monitor the vibration signal. If the proper parameters are programmed, the signal should look like the picture below when the motor is vibrating.
 - While the motor is vibrating, "Threshold high" and "Threshold low" signals show pulses corresponding to the vibration pattern.
 - After 8 electrical cycles, the vibration lock detect will be triggered.
- D. If either "Threshold high" or "Threshold low" doesn't show at least one pulse during each period, the IC is not able to detect the vibration condition, and the parameters need to be adjusted further.

NOTE 4. TESTING MOTOR STARTUP

- A. An automated testing feature is provided on the "Startup test" tab.
- B. Set the desired on-time, off-time (provide enough time for the motor to stop), and push the Run/Stop button.
- C. A startup is considered successful if the RMP at the end of the on-time is between the specified RPM limits.

		Detect Startup test	
- 5	Startup evaluation		
	Continuously toggle	On time	= 10 s
	Run/Stop	Off time	= 10 s
	A startup is determi on-time is between	ed to be successful if the RPM at the er	nd of the M
	Clear counts	? / ? successful startups	

OTHER OPERATING FEATURES OF A89301

Motor Operation Status Readback

The register state_top_level[3:0] holds the motor operation status, which can be read through I2C. The address is 127[15:12].

The grey highlighted items are FAULT related. It can be used to extract the fault condition instead of decoding the flash patterns on the Fault pin.

Table 2: state_top_level Register

State Top Level	State
0	initial (idle)
1	first cycle (open loop)
2	IPD (initial position detection)
3	Normal spinning
4	n/a
5	Lock detected
6	Brake
7	Sleep (can't read it because IC is in sleep)
8	state
9	Windmill startup
10	Change direction
11	OCP (overcurrent protection)
12	OTP (overtemperature)
13	Bad system (VREG abnormal, VCP abnormal)
14	Brake external pin
15	Pre-Sleep (soft off state)

Table 3: I²C Specifications and Timing

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
I ² C TIMING				^ 		
SCL Clock Frequency	f _{CLK}		7	_	200	kHz
Bus Free Time (Between Stop/Start)	t _{BUF}		2.3	-	-	μs
Hold Time Start Condition	t _{HD:STA}		0.6	-	-	μs
Setup Time for Start	t _{SU:STA}		0.6	_	_	μs
SCL Low Time	t _{LOW}		2.3	_	_	μs
SCL High Time	t _{HIGH}		0.6	-	_	μs
Data Setup Time	t _{SU:DAT}		350	-	-	ns
Data Hold Time	t _{HD:DAT}		50	_	900	ns
Setup Time for Stop	t _{su:sto}		0.6	-	-	μs
Signal Rising Time	t _{R_I2C}	Both SCL and SDA	20	-	300	ns
Signal Falling Time	t _{F_I2C}	Both SCL and SDA	20	_	300	ns

I²C Hardware Connection

Standard I²C interface requires both SDA and SCL to be an opendrain structure, which achieves bidirectional communication.

The A89301 application is a single master, single slave system, so SCL is only an input for the A89301, which does not need a pullup resistor. SDA is a bidirectional signal, which requires a pull-up resistor. The value of the pull-up resistor depends on the slew rate requirements on the SDA line; a range from 3.3 k Ω to 10 k Ω is recommended. If a slower communication rate is used, R_{PULL_UP} can be bigger in value. The pull-up voltage range is from V_{REF} (2.8 V) to 5.5 V.

If the MCU does not support the I²C peripheral, or the user decides to program I²C with GPIO (general purpose input output), the following circuit is recommended. SDA_in is an input signal, which receive the ACK (acknowledge) signal, or readback signal from A89301. SDA out is an output signal.

OCL and OCP

The A89301 implements two stages of current protection: one is OCL (overcurrent limit) and the other is OCP (overcurrent protection).

The OCP condition is a catastrophic condition; for example, the short circuit between phase to phase, phase to GND, or phase to VBB. The function is implemented using a V_{DS} comparator, comparing each V_{DS} voltage and a reference voltage that is configurable (1 V or 2 V).

The OCL is not a catastrophic condition. It will be triggered during accelerate and motor stall conditions. When the OCL is triggered, the system will reduce the output voltage amplitude and regulate the current at the $1.125 \times$ "rated current" level (bus current). Phase current peak is $1.3 \times$ rated current level.

$$1.125 / (sqrt(3) / 2) = 1.3$$

OCP Masking Time and Filtering Time

OCP condition has the highest priority; when it is triggered, the state machine will stop the motor immediately. However, blanking time and filtering time is implemented to prevent mis-triggering. Masking time is when one phase is turning on, and turning off, the V_{DS} comparator will show a period of unstable output, which will be blanked out. Filtering time is a digital filter for each of the six potential OCP signals after the blanking logic.

The blanking time has been set at 640 ns by default, and filtering time has been set at 480 ns by default. Those numbers are configurable.

Bus Current vs. Q-Axis Current

The bus current is the average voltage drop measured from the current sense resistor, with an amplifier gain of 14.5. The Q-axis represent the phase current peak value (with 0.866 ratio).

If the output duty is 100%, Q-axis current = bus current.

If the output duty is 50%, Q-axis current = $2 \times$ bus current.

If the output duty is 33.3%, Q-axis current = $3 \times$ bus current.

The bus current measurement is executed every 3 PWMs, $(120 \ \mu s)$, but the I²C readback cannot be as fast as 120 μs .

Gate Driver

The A89301 gate driver outputs are current source/sink drivers.

Internally, 100 k Ω resistor is connected between GLx and LSS, and between GHx and Sx. When the device is in sleep mode, digital logic, charge pump, and regulators will be off. These 100 k Ω resistors pull down gate voltage to ensure the external MOSFETs are turned off in sleep mode.

The gate drive sink current $\rm I_{SI}$ and source current $\rm I_{SO}$ can be configured in EEPROM to adjust the MOSFET slew rate.

The I_{SI} in the Electrical Characteristics table is active when the external MOSFET is turning off. When the MOSFET is fully off (gate to source voltage $V_{GS} < 1$ V), the gate drive will switch to a voltage source (short to LSS) to hold the MOSFETs in the off state. In voltage source mode, the sink drive is stronger. The typical I_{SI_OFF_PEAK} is 200 mA.

Current Limit Level Ramping Up With Speed

Considering fan type applications, the load is increasing while the motor speed increases. For example, the "motor-rated current" is set at 3 A, and motor-rated speed is 6000 rpm, it can be assumed the system does not require 3 A current at one third of the rated operation speed (2000 rpm).

The startup current is implemented as a function of the motor speed, which is, in the following example, at zero speed, the current limit is $\frac{1}{2} \times (932 \text{ mA})$; at full speed, the current limit is 1×1.125 ; and between the zero speed and full speed, current limit follows the curve in below picture.

So, if the motor speed is less than half of the rated speed, the current limit will be less than the rated current, and even with load increasing, the operation current will not reach the rated current.

Charge Pump Capacitor Selection

The A89301 has a charge pump circuit which provides high-side N-channel MOSFETs gate-driving voltage and current. One pumping capacitor (C_P) needs to be connected between CP1 and CP2, and one reservoir capacitor (C_R) needs to be connected between VCP and VBB.

When the A89301 is in the normal operation mode (running a motor), the current drawn from VCP has the static component and the dynamic component. The static component is about 1.5 mA. The dynamic component is about 1.5 mA with 2000 nF CISS MOSFETs. The dynamic current is proportional to the switching frequency and the CISS of the MOSFET.

The values 0.1 μ F for the pumping capacitor and 0.1 μ F for the reservoir capacitor were used for product design, simulation, and verification; these meet the voltage ripple and stability requirements, and are recommended for user applications.

A lower valued reservoir capacitor will cause higher V_{CP} ripple the worst case happens when the MOSFET has larger CISS and when the high-side three phases are turned on at the same time.

The pumping capacitor should be the same value as the reservoir capacitor: if it is too large, it will cause more V_{CP} ripple; if it is too small, the charge pump driving capability will be limited.

SCHEMATIC

LAYOUT

Table 4: A89301	Evaluation	Board	Bill of	Materials
-----------------	------------	-------	---------	-----------

ELECTRICAL COMPONENTS						
Designator	Quantity	Description	Part Type	Footprint		
BRAKE, CP1, CP2, DIR, FAULT, FG, GHA, GHB, GHC, GLA, GLB, GLC, LSS, SA, SB, SC, SCL, SDA, SPD, VBB, VBB_, VCP, VREG	23	Large Test Point	Keystone Electronics 5010; Digikey 36-5010-ND	PAD 57 125 TP HB		
C1, C2	2	16 V Capacitor	Murata GRM219R71C104KA01D; Digikey 490-1683-1-ND	0805		
C3	1	35 V Capacitor	Chemi-Con EMZA350ADA4R7MD61G; Digikey 565-2553-1-ND	UCC D61 Cap		
C4	1	50 V Capacitor	Murata GRM216R71H103KA01D; Digikey 490-1664-1-ND	0805		
C5, C6	2	100 V Capacitor	TDK CGA9P3X7S2A156M250KB; Digikey 445-7948-1-ND	2220		
C7	1	50 V Capacitor	Not Installed	CAP10mmDIA_5mmPS		
C8	1	50 V Capacitor	Chemi-Con EKY-500ELL471MK20S; Digikey 565-1610-ND	CAP10mmDIA_5mmPS		
C9	1	50 V Capacitor	Murata GCM21BR71H224KA37L; Digikey 490-4970-1-ND	0805		
C10, C11, C12	3	50 V Capacitor	TDK C2012X7R1H104K085AA; Digikey 445-7534-1-ND	0805		
CN1	1	USB 2.0 Connector	EDAC 690-005-299-043; Digikey 151-1206-1-ND	EDAC 690-005-299-043		
CN2, JMP1, JPM2, JMP3	10 Pins	Cut from 50-Pin Strip	Samtec TSW-150-07-T-S; Digikey SAM1035-50-ND	3-Pin 0.1" Connector, 2-pos. shunt		
CN3	1	Molex 3-Pin Verticle Recepticle	Molex 0022022035; Digikey WM3201-ND	Molex 3-Pin 4455-N Vertical2		
-	4	Bumpon Foot	3M SJ-5303 (CLEAR); Digikey SJ5303-7-ND	Bumpon Foot		
J1, J2, J3	3	Screw Connector Terminal	Keystone 7701; Digikey 36-7701-ND	Keystone 7701 BottomOnly		
J4	1	Red Screw Connector Terminal	Keystone 7701-2; Digikey 36-7701-2-ND	Keystone 7701		
J5	1	Black Screw Connector Terminal	Keystone 7701-3; Digikey 36-7701-3-ND	Keystone 7701		
L1	1	Ferrite Bead	Laird MI0805K400R-10; Digikey 240-2389-1-ND	0805		
LED1	1	Red Surface-mount LED	Lite-On LTST-C150CKT; Digikey 160-1167-1-ND	1206 LED		
-	1	РСВ	85-0910-001 Rev. 2			
P1	1	1/20 W Potentiometer	Bourns PTV09A-4020F-A103; Digikey PTV09A-4020F-A103-ND	PTV09A-4 Pot.		
Q1, Q2, Q3, Q4, Q5, Q6	6	60 V 50 A N-FET	Infineon IPD50N06S4L12ATMA2; Digikey IPD50N06S4L12ATMA2CT-ND	D-PAK, TO-252		
R1, R2	2	1/8 W Resistor	Vishay/Dale CRCW080527R0FKEA; Digikey 541-27.0CCT-ND	0805		
R5, R6	2	3 W Resistor	Bourns CRA2512-FZ-R025ELF; Digkey CRA2512-FZ-R025ELFCT-ND	2512 (6432 Metric)		
R7, R15, R16, R17	4	1/8 W Resistor	Panasonic ERJ-6GEYJ201V; Digikey P200ACT-ND	0805		
R8, R9, R10, R11, R12, R13	6	1/8 W Resistor	Panasonic ERJ-6GEY0R00V; Digikey P0.0ACT-ND	0805		
R14, R18, R19	3	1/8 W Resistor	Panasonic ERJ-6ENF4991V; Digikey P4.99KCCT-ND	0805		
RNET1	1	4 Isolated Resistors	CTS 744C083103JP; Digikey 744C083103JPCT-ND	CTS 744 Series		
SW1	1	Dual SPDT Switch	Grayhill 76STC02T; Digikey 76STC02T-ND	76STC02T		
SW2	1	Surface-mount momentary switch	C&K Components KSC201GLFS; Digikey 401-1755-1-ND	KSC201GLFS		
U1	1	BLDC Motor Controller	A89301xES	ES_24-Pin_4x4QFN		
U2	1	USB 8-Bit FIFO IC	FTDI FT240XS-R; Digikey 768-1127-1-ND	SSOP-24 (150mil)		
U3	1	Dual N-CH Fet's	Toshiba Semi SSM6N15AFU,LF; Digikey SSM6N15AFULFCT-ND	SOT-363		
W1, W2	2	22 Gauge Bus Wire (300 mils above PCB)		Scope Ground		
ZD1	1	TVS Diode	Bourns SMBJ45A; Digikey SMBJ45ABCT-ND	DO-214AA		

RELATED LINKS

A89301 Product Page: https://www.allegromicro.com/en/products/motor-drivers/bldc-drivers/a89301

Software Registration Site: http://registration.allegromicro.com/login

APPLICATION SUPPORT

For applications support contact, go to https://www.allegromicro.com/en/about-allegro/contact-us/technical-assistance and navigate to the appropriate region.

Revision History

Number	Date	Description
_	February 27, 2019	Initial Release
1	March 6, 2020	Minor editorial updates
2	April 3, 2023	Added schematic, layout, bill of materials, related links, and minor editorial updates

Copyright 2023, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

