
ASEK30-UM
MCO-0001916

DESCRIPTION
This guide provides a reference for programming Allegro
sensors using the Allegro Application Sample Programmer
(AASP) dynamic-link libraries (DLLs).

Reference Guide: Programming Using AASP DLLs

ASEK-30

June 26, 2025

Table of Contents
Description..1
AASP Commands...2

Creation and Communication..2
Programmer-Specific Commands....................................3
Programmer Daughterboard Commands..........................4
Programmer Features..7
Programmer Properties..8
ADC Commands..9
DAC Commands..10
Programmer GPIO...12
Capture Event Commands..13
Capturable Events...13
VCC Port Commands...14
Port Features..15
GPIO Port Commands..17
Device Creation, Destruction, and Listing........................18
Device Parameter Values and Commands......................19
Device Memory Commands..27
Device Pulse Commands..32
Scan Vector Commands...33
Device Read, Output Commands...................................34
Device Sample, Output Commands................................35

AASP_Port Commands...38
Port Power Commands...38
Port Feature Values and Commands..............................38
Port Properties..39
GPIO Port Commands..41

AASP_Device Commands...42
Device Commands...42
Device Parameters..43
Device Parameter Commands.......................................47
Device Properties..49
Device Memory Commands..57
Device Pulse Commands..60
Scan Vector Commands...61
Device Read Output Commands....................................62
Device Sample Output Commands................................63
Device Serial Commands (Crocus)................................65

Utility Routines...66
Bit-Field Routines..66

Revision History...67

2
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

AASP COMMANDS
Creation and Communication
AASP
Initialize the base objects.

aasp.AASP();

GetCommunicationPortNames()
Retrieves a list of port names for the vendor and product identi-
fier, filtered by SetCommunicationPortFilters.

Parameter Type Description
return value string[] An array of communication port names

string[] port_names = aasp.GetCommunicationPortNames(
VendorID, ProductID);

GetCommunicationPortNames(int, int)
Retrieves a list of port names for the desired vendor and product
identifier.

Parameter Type Description

VendorID int USB vendor identifier; 12824 (0x3218)
is the Allegro vendor identifier

ProductID int USB product identifier: If all vendor
products is desired, set to 1

return value string[] An array of communication port names

string[] port_names = aasp.GetCommunicationPortNames(
VendorID, ProductID);

SetCommunicationPortFilters(int, int, bool)
Sets the port filters for the desired vendor and product identifier.

Parameter Type Description

VendorID int USB vendor ID 12824 (0x3218) is
the Allegro vendor identifier

ProductID int USB product ID: For all vendor
products, set to 1

IncludeAllSerialPorts bool
If all serial ports are to be included
in the list (unfiltered by vendor and
product identifiers), set to true

return value string[] An array of communication port
names

string[] port_names = aasp.SetCommunicationPortNames(
VendorID, ProductID, true);

SetCommunicationPortFilters(int, int, bool)
Sets the port filters for the desired vendor and product identifier.

Parameter Type Description

FilterItems PortFilterItem[]
An array of vendor
and product
identifiers

IncludeAllSerialPorts bool

If all serial ports are
to be included in
the list (unfiltered by
vendor and product
identifiers), set to
true

return value string[]
An array of
communication port
names

AASP.PortFilterItem[] PortFilters = new AASP.
PortFilterItem[1];
PortFilters[0] = new AASP.PortFilterItem(0x3218, -1);
string[] port_names = aasp.SetCommunicationPortNames(
PortFilters, true);

GetCommunicationPort()
Obtains the name of the port opened to the AASP.

Parameter Type Description
return value string The port name

string port_name = aasp.GetCommunicationPort();

OpenCommunicationPort(string)
Opens a port to an AASP.

Parameter Type Description

Port string The name of the serial or USB port to open

return value bool If the port was opened, the value is true

bool isOpened = OpenCommunicationPort(port);

CloseCommunicationPort()
Closes the communication port.

aasp.CloseCommunicationPort();

IsActive()
Checks to see if there is an active connection to the AASP.

Parameter Type Description

return value bool If there is an active connection to an
AASP or ASEK, the value is true

bool isActive = aasp.IsActive();

3
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Version(out VersionInformation version_information)
Returns the version information of the connected programmer.

public class VersionInformation

{
	 // The board (TED) number of the programmer
	 public int Board { get; set; }
	
	 // The major version number
	 public int Major { get; set; }
	
	 // The minor version number
	 public int Minor { get; set; }
	
	 // The bug version number
	 public int Bug { get; set; }
	
	 // The build number
	 public int Build { get; set; }
	
	 // The name of the programmer
	 public string Name { get; set; }
	 // The unique id of the programmer
	 public string ID { get; set; }
	
	 // The serial number of the programmer
	 public string SerialNumber { get; set; }
};

Parameter Type Description
version_
information VersionInformation The version information from the

programmer

return value int
If the version call fails, returns
the error; otherwise, returns
kNOERROR(0)

int error = aasp.Version(out version_information);

GetProgrammerPorts(out int)
Obtains the number of ports contained in the programmer.

Parameter Type Description

ports int Returns the number of ports in the
programmer

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.GetProgrammerPorts(out ports);

GetProgrammerResources(out int, out int, out int, out int,
out int)
Obtains the number of resources supported by the programmer.

Parameter Type Description

ports int Returns the number of ports in the
programmer

adcs int Returns the number of ADCs in the
programmer

dacs int Returns the number of DACs in the
programmer

gpios int Returns the number of GPIOs in the
programmer

port_gpios int
Returns the number of GPIOs
associated with a port in the
programmer

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.GetProgrammerResources(out ports,
out adcs, out dacs, out gpios, out port_gpios);

GetLastErrors()
Obtains the list of errors.

Parameter Type Description
return value int[] An array of error codes

int[] errors = aasp.GetLastError(reset);

ClearLastErrors()
Clears the list of errors.

aasp.ClearLastErrors();

Reset()
Resets the programmer.

Parameter Type Description

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.Reset();

RunBootLoader(UInt32)
Starts the boot loader in the programmer.

Parameter Type Description
code UInt32 Unlock code to start the bootloader

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.RunBootLoader(UInt32 code)

Programmer-Specific Commands

4
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

GetDaughterboardID(out int)
Obtains the daughterboard identifier.

Parameter Type Description
id int The daughterboard identifier

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.GetDaughterboardID(out id);

SetDaughterboardBitsDirections(int, uint)
Sets the direction of the daughterboard bits.

Parameter Type Description
bank int The bit bank to write [0:4]

value uint The directions of the 16 bits in the
bank (1 = output; 0 = input)

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

nt error = aasp.SetDaughterboardBitsDirections(bank,
value);

WriteDaughterboardOutputBits(int, uint)
Writes the values to the daughterboard output bits.

Parameter Type Description
bank int The bit bank to write [0:4]

value uint The value of the 16 bits in the bank
that are set up for output

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.WriteDaughterboardOutputBits(bank,
value);

SetDaughterboardOutputBits(int, uint)
Sets the values of the output bits.

Parameter Type Description
bank int The bit bank to write [0:4]

mask uint
The mask of the 16 bits in the bank
that are to be set: 1 = set; 0 = no
action

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.SetDaughterboardOutputBits(bank,
mask);

ClearDaughterboardOutputBits(int, uint)
Clears the values of the daughterboard output bits.

Parameter Type Description
bank int The bit bank to write [0:4]

mask uint
The mask of the 16 bits in the bank
that are to be cleared: 1 = cleared;
0 = no action

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ClearDaughterboardOutputBits(bank,
mask);

ToggleDaughterboardOutputBits(int, uint)
Toggles the daughterboard output bits.

Parameter Type Description
bank int The bit bank to write [0:4]

mask uint
The mask of the 16 bits in the bank
that are to be toggled: 1 = toggled;
0 = no action

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ToggleDaughterboardOutputBits(bank,
mask);

Programmer Daughterboard Commands
Every daughterboard must have a PCA9555 at address 0x27 that contains the identifier (ID) of the daughterboard. The Allegro test
equipment document (TED) number is typically used for the ID. Up to five more PCA9555s can be used to drive relays, setup for
input, or other functions. Each of these nondaughterboard ID PCA9555s are a bank of input/output (I/O) bits [0:4].

5
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

ReadDaughterboardOutputBits(int, out uint)
Reads the daughterboard output bits and returns the values.

Parameter Type Description
bank int The bit bank to read [0:4]

value uint The value that was written of the 16
bits in the bank that are set for output

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadDaughterboardOutputBits(bank,
out value);

ReadDaughterboardInputBits(int, out uint)
Reads the daughterboard input bits and returns the values.

Parameter Type Description
bank int The bit bank to read [0:4]

value uint The value that was read of the 16 bits
in the bank that are set for input

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadDaughterboardInputBits(bank, out
value);

Flags used for Daughterboard I2C Routines

Name Type Value Description

kI2CDataMSBFirst UInt16 0x0001
The msb of the data
is the first byte read or
written

kI2CAddressMSBFirst UInt16 0x0100 The msb of the address
is the first byte written

kI2CAddressSize UInt16 0x0600
The size of the address
sent to the I2C device,
mask

kI2CAddressSize1 UInt16 0x0000
The size of the address
sent to the I2C device is
1 byte

kI2CAddressSize2 UInt16 0x0200
The size of the address
sent to the I2C device is
2 bytes

kI2CAddressSize3 UInt16 0x0400
The size of the address
sent to the I2C device is
3 bytes

kI2CAddressSize4 UInt16 0x0600
The size of the address
sent to the I2C device is
4 bytes

ReadDaughterboardByteI2C(int, long, int, out byte)
Reads a byte from a device on the daughterboard I2C bus.

Parameter Type Description
device_address int I2C bus address [0:127]

address long The register address

flags int The flags describing how the data and
address are handled

value byte The value that was read

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadDaughterboardByteI2C(device_
address, address, flags, out value);

ReadDaughterboardWordI2C(int, long, int, out UInt16)
Reads a 16-bit word from a device on the daughterboard I2C bus.

Parameter Type Description
device_address int I2C bus address [0:127]

address long The register address

flags int The flags describing how the data and
address are handled

value UInt16 The value that was read

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadDaughterboardWordI2C(device_
address, address, flags, out value);

ReadDaughterboardLongI2C(int, long, int, out UInt32)
Reads a 32-bit word from a device on the daughterboard I2C bus.

Parameter Type Description
device_address int I2C bus address [0:127]

address long The register address

flags int The flags describing how the data and
address are handled

value UInt32 The value that was read

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadDaughterboardLongI2C(device_
address, address, flags, out value);

6
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

ReadDaughterboardByteArrayI2C(int, long, int, int, out
byte[])
Reads a byte from a device on the daughterboard I2C bus.

Parameter Type Description
device_address int I2C bus address [0:127]

address long The register address

flags int The flags describing how the data and
address are handled

number_of_bytes int The number of bytes to read

value byte[] The value that was read

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadDaughterboardByteArrayI2C(dev
ice_address, address, flags, number_of_bytes, out
values);

WriteDaughterboardByteI2C(int, long, int, byte)
Writes a byte to a device on the daughterboard I2C bus.

Parameter Type Description
device_address int I2C bus address [0:127]

address long The register address

flags int The flags describing how the data and
address are handled

value byte The value to write

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.WriteDaughterboardByteI2C(device_
address, address, flags, value);

WriteDaughterboardWordI2C(int, long, int, UInt16)
Writes a 16-bit word to a device on the daughterboard I2C bus.

Parameter Type Description
device_address int I2C bus address [0:127]

address long The register address

flags int The flags describing how the data and
address are handled

value UInt16 The value to write

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.WriteDaughterboardWordI2C(device_
address, address, flags, value);

WriteDaughterboardLongI2C(int, long, int, UInt32)
Writes a 32-bit word to a device on the daughterboard I2C bus.

Parameter Type Description
device_address int I2C bus address [0:127]

address long The register address

flags int The flags describing how the data and
address are handled

value UInt32 The value to write

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.WriteDaughterboardLongI2C(device_
address, address, flags, value);

WriteDaughterboardByteArrayI2C(int, long, int, byte[])
Writes a byte array to a device on the daughterboard I2C bus.

Parameter Type Description
device_address int I2C bus address [0:127]

address long The register address

flags int The flags describing how the data
and address are handled

values byte[] The value to write

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.WriteDaughterboardByteArrayI2C(dev
ice_address, address, flags, values);

7
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Programmer Features
These are the different programmer features that can be set or obtained from the programmer. Not all features are available on all pro-
grammers. If a feature is not available on the programmer, kUNKNOWNPARAMETERERROR or kNOTIMPLEMENTEDERROR is
returned. If the value given to set a parameter is not within the range of valid values, kBADPARAMETERVALUEERROR is returned.
When a feature is set, the hardware updates to reflect the new value.

Programmer Features

Name Feature ID Description
ProgrammerGPIOVoltage 0 GPIO voltage (float)

ProgrammerGPIOPull-upSelection 1
Indicates which pull-up is used on the GPIO bus (uint):
0 = off
> 0 = hardware specific

ProgrammerI2CVoltage 2 I2C bus voltage (float)

ProgrammerI2CPull-upSelection 3
Indicates which pull-up is used on the I2C bus (uint):
0 = off
> 0 = hardware specific

ProgrammerSPIVoltage 4 SPI bus voltage (float)

ProgrammerGPIOEnable 5 0 = false; otherwise, true
ProgrammerI2CEnable 6 0 = false; otherwise, true
ProgrammerSPIEnable 7 0 = false; otherwise, true
EVComparitor1Threshold 10000 Voltage threshold value for comparator 1 (float)
EVComparitor2Threshold 10001 Voltage threshold value for comparator 2 (float)
EVComparitor3Threshold 10002 Voltage threshold value for comparator 3 (float)
EVComparitor4Threshold 10003 Voltage threshold value for comparator 4 (float)
EVInputMultiplexor1 10004 Input selection for multiplexor 1 (uint)
EVInputMultiplexor2 10005 Input selection for multiplexor 2 (uint)

SetFeature(string, UInt32)
Sets the feature. The feature name is one of the names in the
Programmer Features table.

Parameter Type Description
feature string The programmer feature to change

value UInt32 The value to write

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.SetFeature(“ProgrammerGPIOPull-
upSelection”, 1);

SetFeature(UInt16, UInt32)
Sets the feature. The feature is the enumeration value.

Parameter Type Description
feature UInt16 The programmer feature to change

value UInt32 The value to write

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.SetFeature((UInt16)AASP.
ProgrammerFeature.ProgrammerGPIOPull-upSelection, 1);

GetFeature(string, out UInt32)
Obtains the feature. The feature name is one of the names in the
Programmer Features table.

Parameter Type Description

feature string The programmer feature that has the
value that is to be obtained

value UInt32 The value that was read

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.GetFeature(“ProgrammerGPIOPull-
upSelection”, out value);

GetFeature(UInt16, out UInt32)
Obtains the feature. The feature is the enumeration value.

Parameter Type Description

feature UInt16 The programmer feature that has the
value that is to be obtained

value UInt32 The value that was read

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.GetFeature((UInt16)AASP.
ProgrammerFeature.ProgrammerGPIOPull-upSelection, out
value);

8
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SetFloatFeature(string, double)
Sets the float feature of the AASP. The feature name is one of the
names in the Programmer Features table.

Parameter Type Description
feature string The programmer feature to change

value double The value to write

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.SetFloatFeature(“ProgrammerGPIOVolt
age”, value);

SetFloatFeature(UInt16, double)
Sets the float feature of the AASP. The feature is the enumeration
value.

Parameter Type Description
feature UInt16 The programmer feature to change

value double The value to write

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.SetFloatFeature(feature, value);

GetFloatFeature(string, out double)
Obtains the float feature. The feature is the enumeration value.

Parameter Type Description

feature string The programmer feature that has the
value that is to be obtained

value double The value that was read

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.GetFloatFeature(“ProgrammerGPIOVolt
age”, out value);

GetFloatFeature(UInt16, out double)
Obtains the float feature.

Parameter Type Description

feature UInt16 The programmer feature that has the
value that is to be obtained

value double The value that was read

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.GetFloatFeature(feature, out value);

Programmer Properties
All programmer features can be accessed through properties of
the AASP class. This means that they can be read and written as
if they were variables.

WARNING: These are the only actions in the AASP class that
initiate an exception if they fail.

ProgrammerGPIOVoltage
The voltage that is used on the GPIO drivers and pull-ups.

aasp.ProgrammerGPIOVoltage = 5.0;

ProgrammerGPIOPull-upSelection
Selection of pull-up used on the GPIOs.

aasp.ProgrammerGPIOPull-upSelection = 1;

ProgrammerI2CVoltage
The voltage that is used on the I2C drivers and pull-ups.

aasp.ProgrammerI2CVoltage = 3.3;

ProgrammerI2CPull-upSelection
The pull-up that is used on the I2C bus.

aasp.ProgrammerI2CPull-upSelection = 2;

ProgrammerSPIVoltage
The voltage that is used on the SPI drivers.

aasp.ProgrammerSPIVoltage = 3.3;

9
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

ReadADC(UInt16, UInt16, UInt16, out double)
Reads the ADC, and returns the value.

Parameter Type Description
address UInt16 The ADC to read

multiplexor UInt16 The selection value for the multiplexor
connected to the ADC

number_of_
samples UInt16 The number of samples to average

value double The value that was read

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadADC(address, multiplexor, out
value);

ReadADCRaw(UInt16, UInt16, UInt16, out UInt32)
Reads the ADC, and returns the raw value.

Parameter Type Description
address UInt16 The ADC to read

multiplexor UInt16 The selection value for the multiplexor
connected to the ADC

value UInt32 The value that was read

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadADCRaw(address, multiplexor, out
value);

ReadADCPair(UInt16, UInt16, UInt16, UInt16, out double,
out double)
Reads the ADC pair, and returns the values. If possible, the reads
are synchronized.

Parameter Type Description
address0 UInt16 The first ADC to read

address1 UInt16 The second ADC to read

multiplexor0 UInt16 The selection value for the multiplexor
connected to the first ADC

multiplexor1 UInt16 The selection value for the multiplexor
connected to the second ADC

value0 double The value that was read from the first
ADC

value1 double The value that was read from the
second ADC

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadADCPair(address0, address1,
multiplexor0, multiplexor1, out value0, out value1);

ReadADCPairRaw(UInt16, UInt16, UInt16, UInt16, out
UInt32, out UInt32)
Reads the ADC pair, and returns the raw values. If possible, the
reads are synchronized.

Parameter Type Description
address0 UInt16 The first ADC to read

address1 UInt16 The second ADC to read

multiplexor0 UInt16 The selection value for the multiplexor
connected to the first ADC

multiplexor1 UInt16 The selection value for the multiplexor
connected to the second ADC

value0 UInt32 The value that was read from the first
ADC

value1 UInt32 The value that was read from the
second ADC

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadADCPairRaw(address0, address1,
multiplexor0, multiplexor1, out value0, out value1);

ADC Commands

10
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

WriteDAC(UInt16, double)
Writes the value to a DAC.

Parameter Type Description
address UInt16 The DAC to write

value double The value to write

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.WriteDAC(address, value);

WriteDACRaw(UInt16, UInt32)
Writes the value to a DAC.

Parameter Type Description
address UInt16 The DAC to write

value UInt32 The value to write

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.WriteDACRaw(address, value);

WriteDACPair(UInt16, UInt16, double, double)
Writes the value to a DAC pair.

Parameter Type Description
address0 UInt16 The first DAC to write

address1 UInt16 The second DAC to write

value0 double The value to write to the first ADC

value1 double The value to write to the second ADC

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.WriteDACPair(address0, address1,
value0, value1);

WriteDACPairRaw(UInt16, UInt16, UInt32, UInt32)
Writes the raw value to a DAC pair.

Parameter Type Description
address0 UInt16 The first DAC to write

address1 UInt16 The second DAC to write

value0 UInt32 The value to write to the first ADC

value1 UInt32 The value to write to the second ADC

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.WriteDACPairRaw(address0, address1,
value0, value1);

WriteSequenceDAC(UInt16, double, double[])
Writes a sequence of values to a DAC.

Parameter Type Description
address UInt16 The DAC to write

rate double The rate of performance of the write
operation to the DAC, in Hz

value double The value to write

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.WriteDAC(address, rate, value);

WriteSequenceDACRaw(UInt16, double, UInt32[])
Writes a sequence of raw values to a DAC.

Parameter Type Description
address UInt16 The DAC to write

rate double The rate of performance of the write
operation to the DAC, in Hz

value UInt32 The value to write

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.WriteDACRaw(address, rate, value);

DAC Commands

11
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

WriteSequenceDACPair(UInt16, UInt16, double, double[],
double[])
Writes a sequence of values to a DAC pair.

Parameter Type Description
address0 UInt16 The first DAC to write

address1 UInt16 The second DAC to write

rate double The rate of performance of the write
operation to the DAC, in Hz

value0 double[] The values to write to the first ADC

value1 double[] The values to write to the second ADC

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.WriteSequenceDACPair(address1,
address2, rate, values1, values2);

WriteSequenceDACRaw(UInt16, UInt16, double, UInt32[],
UInt32[])
Writes a sequence of raw values to a DAC pair.

Parameter Type Description
address0 UInt16 The first DAC to write

address1 UInt16 The second DAC to write

rate double The rate of performance of the write
operation to the DAC, in Hz

value0 UInt32[] The raw values to write to the first ADC

value1 UInt32[] The raw values to write to the second
ADC

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.WriteSequenceDACPairRaw(address1,
address2, rate, values1, values2);

ReadDAC(UInt16, out double)
Reads the DAC, and returns the value.

Parameter Type Description
address UInt16 The DAC to read

value double The value the was read

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadDAC(address, double value);

ReadDACRaw(UInt16, out UInt32)
Reads the DAC, and returns the raw value.

Parameter Type Description
address UInt16 The DAC to read

value UInt32 The raw value the was read

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadDACRaw(address, out value);

12
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SetOutputBitsDirections(UInt32)
Sets the direction of the output bits (1 = output, 0 = input). There
are a maximum of 32 GPIO bits; however, the actual number
depends on the hardware of the programmer.

Parameter Type Description

value UInt32 The directions of the GPIOs:
1 = output; 0 = input

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.SetOutputBitsDirections(value);

WriteOutputBits(UInt32)
Writes the values to the output bits.

Parameter Type Description
value UInt32 The values of the GPIOs

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.WriteOutputBits(value);

SetOutputBits(UInt32)
Sets the bits in the output to 1 that are set to 1 in the mask; does
not set any bits that are set to 0 in the mask.

Parameter Type Description

mask UInt32 The mask of the bits in the GPIOs that
are to be set: 1 = set; 0 = no action

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.SetOutputBits(mask);

ClearOutputBits(UInt32)
Sets the bits in the output to 0 that are set to 1 in the mask; does
not clear any bits that are set to 0 in the mask.

Parameter Type Description

mask UInt32
The mask of the bits in the GPIOs that
are to be cleared: 1 = clear; 0 = no
action

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ClearOutputBits(mask);

ToggleOutputBits(UInt32)
Toggles the bits in the output that are set to 1 in the mask; does
not toggle any bits that are set to 0 in the mask.

Parameter Type Description

mask UInt32
The mask of the bits in the GPIOs that
are to be toggled: 1 = toggle; 0 = no
action

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ToggleOutputBits(mask);

ReadOutputBits(out uint)
Reads the output bits, and returns the values.

Parameter Type Description

value UInt32 The value that was written to the
GPIOs that are set for output

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadOutputBits(out value);

ReadInputBits(out uint)
Reads the input bits, and returns the values.

Parameter Type Description

value UInt32 The value that was read from the
GPIOs that are set for input

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadInputBits(out value);

Programmer GPIO

13
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

The programmer can time-stamp various input events. When the
capture starts, the timer resets to 0, and all timestamps are relative
to this start time.

Capturable Events
Name Bit Description

kCOMPARATOR1RISINGEVENT 0 Output of comparator 1
rising

kCOMPARATOR1FALLINGEVENT 1 Output of comparator 1
falling

kCOMPARATOR2RISINGEVENT 2 Output of comparator 2
rising

kCOMPARATOR2FALLINGEVENT 3 Output of comparator 2
falling

kCOMPARATOR3RISINGEVENT 4 Output of comparator 3
rising

kCOMPARATOR3FALLINGEVENT 5 Output of comparator 3
falling

kCOMPARATOR4RISINGEVENT 6 Output of comparator 4
rising

kCOMPARATOR4FALLINGEVENT 7 Output of comparator 4
falling

kMANCHESTER1RISINGEVENT 8 Output of Manchester 1
rising

kMANCHESTER1FALLINGEVENT 9 Output of Manchester 1
falling

kMANCHESTER2RISINGEVENT 10 Output of Manchester 2
rising

kMANCHESTER2FALLINGEVENT 11 Output of Manchester 2
falling

kGPIO0RISINGEVENT 12 GPIO 0 rising

kGPIO0FALLINGEVENT 13 GPIO 0 falling

kGPIO1RISINGEVENT 14 GPIO 1 rising

kGPIO1FALLINGEVENT 15 GPIO 1 falling

kGPIO2RISINGEVENT 16 GPIO 2 rising

kGPIO2FALLINGEVENT 17 GPIO 2 falling

kGPIO3RISINGEVENT 18 GPIO 3 rising

kGPIO3FALLINGEVENT 19 GPIO 3 falling

kGPIO4RISINGEVENT 20 GPIO 4 rising

kGPIO4FALLINGEVENT 21 GPIO 4 falling

kGPIO5RISINGEVENT 22 GPIO 5 rising

kGPIO5FALLINGEVENT 23 GPIO 5 falling

kGPIO6RISINGEVENT 24 GPIO 6 rising

kGPIO6FALLINGEVENT 25 GPIO 6 falling

kGPIO7RISINGEVENT 26 GPIO 7 rising

kGPIO7FALLINGEVENT 27 GPIO 7 falling

CapturedEvent Structure
Public class captured event.

{
 // Which event was captured.
 public UInt32 Event;

 // When the event was captured in seconds from the
start of capture.
 public double When;
};

StartEventCapture(UInt32, UInt32, UInt32, UInt32)
Starts capturing events.

Parameter Type Description

capture_flags UInt32 The flags to modify the capture (not
used)

event_flags UInt32 Bit mask of events to be captured

starting_flags UInt32 Bit mask of events that trigger the
capture to begin

stopping_flags UInt32 Bit mask of events that trigger the
capture to conclude

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.StartEventCapture(capture_flags,
event_flags, starting_flags, stopping_flags);

StopEventCapture()
Stops capturing events.

Parameter Type Description

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.StopEventCapture();

ReadCapturedEvents(out CapturedEvent[], out bool)
Reads captured events.

Parameter Type Description
events CapturedEvent[] The array of captured events

more_events bool If there are more captured events in
the buffer, the value is true

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadCapturedEvents(out events, out
more_events);

Capture Event Commands

14
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

VCC Port Commands

SetVccOn(int, double, bool)
Sets the VCC port to the desired voltage.

Parameter Type Description
port int The port

voltage double The voltage at which VCC is to be set

unlock_device bool If the access codes are to be sent to
the devices, the value is true

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.SetVccOn(port, voltage, unlock_
device);

SetVccOff(int)
Performs a turn-off of the port.

Parameter Type Description
port int The port

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.SetVccOff(port);

GetVcc(int, out double)
Obtains the voltage on the VCC line of the port.

Parameter Type Description
port int The port

voltage double The actual voltage of VCC

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.GetVcc(port, out voltage);

GetIcc(int, out double)
Obtains the current being supplied to the port.

Parameter Type Description
port int The port

current double The actual current being supplied on
VCC, in mA

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.GetIcc(port, out current);

15
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Port Features
The different port features that can be set or obtained from the port. Not all features are available on all ports or programmers. If a fea-
ture is not available on the port or programmer, kUNKNOWNPARAMETERERROR is returned. If the value given to set a feature is
not within the range of valid values, kBADPARAMETERVALUEERROR is returned. When a feature is set, the hardware is updated
to reflect the new value.

Name Feature
ID Description

PortVoutPull-upSelection 0
Pull-up used on VOUT (uint):
0 = off
> 0 = hardware specific

PortVoutPull-upVoltage 1 Voltage used on the VOUT pull-up (float)

PortInputHighThreshold 2 Input high-threshold voltage (float)

PortInputLowThreshold 3 Input low-threshold voltage (float)

PortGPIOVoltage 4 GPIO voltage (float)

PortGPIOPull-upSelection 5
Pull-up used on the GPIO bus (uint):
0 = off
> 0 = hardware specific

PortI2CVoltage 6 I2C bus voltage (float)

PortI2CPull-upSelection 7
Pull-up used on the I2C bus (uint):
0 = off
> 0 = hardware specific

PortSPIVoltage 8 SPI bus voltage (float)

PortVoutPull-downSelection 9
Pull-down used on VOUT (uint):
0 = off
> 0 = hardware specific

PortVoutCapacitorSelection 10
Capacitor used on VOUT:
0 = off
> 0 = hardware specific (uint)

PortVccBypassCapacitorEnable 11 Bypass capacitor used on VCC (bool)

PortVccRisingSlewRate 12 Slew rate for the rising VCC, in V/ms (float)

PortVccFallingSlewRate 13 Slew rate for the falling VCC, in V/ms (float)

PortGPIOEnable 14 Enable port GPIOs (bool)

PortI2CEnable 15 Enable port I2C bus (bool)

PortSPIEnable 16 Enable port SPI bus (bool)

PortVccOverCurrentLimitEnable 17 Enable port overcurrent limit for VCC (bool)

PortVccOverCurrentLimit 18 Port overcurrent limit for VCC, in A (float)

PortVoutOverCurrentLimitEnable 19 Enable port overcurrent limit for VOUT (bool)

PortVoutOverCurrentLimit 20 Port overcurrent limit for VOUT, in A (float)

SVClockFrequency 9000 Scan-vector clock frequency, in Hz (uint)

SVClockPolarity 9001 Clock active polarity for scan vector: false = active high; true = active low (bool)

SVClockPhase 9002
Clock phase for scan vector: false = data captured upon rising edge and output
upon falling edge; true = data captured upon falling edge and output upon rising
edge (bool)

SVOutputPolarity 9003 Output polarity: false = active low; true = active high (bool)

SVEnablePolarity 9004 Scan enable polarity: false = active low; true = active high (bool)

SVResetBit 9005 GPIO bit used for reset (uint)

16
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SetPortFeature(int, UInt16, UInt32)
Sets the feature of a port.

Parameter Type Description
port int The port where the feature is located

feature UInt16 The port feature to change

value UInt32 The value to write

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.SetPortFeature(port, feature,
value);

GetPortFeature(int, UInt16, out UInt32)
Obtains the feature from a port.

Parameter Type Description
port int The port where the feature is located

feature UInt16 The port feature value to be obtained

value UInt32 The value that was read

int error = aasp.GetPortFeature(port, feature, out
value);

SetPortFloatFeature(int, UInt16, double)
Sets the float feature of a port.

Parameter Type Description
port int The port where the feature is located

feature UInt16 The port feature to change

value double The value to write

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.SetPortFloatFeature(port, feature,
value);

GetPortFloatFeature(int, UInt16, out double)
Obtains the feature from a port.

Parameter Type Description
port int The port where the feature is located

feature UInt16 The port feature value to be obtained

value double The value that was read

int error = aasp.GetPortFloatFeature(port, feature,
out value);

17
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

GPIO Port Commands
SetPortBitsDirections(int, UInt32)
Sets the direction of the output bits on the port (1 = output,
0 = input). A maximum of 32 port GPIO bits is available; however,
the actual number depends on the hardware of the programmer.

Parameter Type Description
port int The port where the GPIOs are located

value UInt32 The directions of the GPIOs:
1 = output; 0 = input

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.SetPortBitsDirections(port, value);

WritePortOutputBits(int, UInt32)
Writes the values to the output bits.

Parameter Type Description
port int The port where the GPIOs are located

value UInt32 The value of the GPIOs

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.WritePortOutputBits(port, value);

SetPortOutputBits(int, UInt32)
Sets the bits in the output to 1 that are set to 1 in the mask; does
not set any bits that are set to 0 in the mask.

Parameter Type Description
port int The port where the GPIOs are located

mask UInt32 The mask of the bits in the GPIOs that
are to be set: 1 = set; 0 = no action

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.SetPortOutputBits(port, mask);

ClearPortOutputBits(int, UInt32)
Sets the bits in the output to 0 that are set to 1 in the mask; does
not clear any bits that are set to 0 in the mask.

Parameter Type Description
port int The port where the GPIOs are located

mask UInt32
The mask of the bits in the GPIOs that
are to be cleared: 1 = clear; 0 = no
action

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ClearPortOutputBits(port, mask);

TogglePortOutputBits(int, UInt32)
Toggles the bits in the output that are set to 1 in the mask; does
not toggle any bits that are set to 0 in the mask.

Parameter Type Description
port int The port where the GPIOs are located

mask UInt32
The mask of the bits in the GPIOs that
are to be toggled: 1 = toggle; 0 = no
action

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.TogglePortOutputBits(port, mask);

ReadPortOutputBits(int, out UInt32)
Reads the output bits, and returns the values.

Parameter Type Description
port int The port where the GPIOs are located

values UInt32 The values read from the GPIOs that
are set for input

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadPortOutputBits(port, out
values);

ReadPortInputBits(int, out UInt32)
Reads the input bits, and returns the values.

Parameter Type Description
port int The port where the GPIOs are located

values UInt32 The values written to the GPIOs that
are set for output

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadPortInputBits(port, out values);

18
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Device Creation, Destruction, and Listing
CreateDevice(int, out int)
Creates a device.

Parameter Type Description

port int The port where the device is to be
created

device int The identifier of the device that was
created

return value int

•	 kINVALIDPORTERROR: The
programmer does not have the
specified port

•	 kTOOMANYDEVICESERROR:
Addition of the specified device
would exceed the capability of the
programmer

•	 kNOERROR(0): The above
conditions do not apply

int error = aasp.CreateDevice(port, out device);

DestroyDevice(int)
Deletes the device from the AASP.

Parameter Type Description
device int The device identifier value

return value int

•	 kINVALIDDEVICEERROR: The
device is not listed in the device
table

•	 kNOERROR(0): The above error did
not occur

int error = aasp.DestroyDevice(device);

GetDevices(out int[])
Obtains the list of devices that are active.

Parameter Type Description
devices int[] The device identifier values

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.GetDevices(out devices);

GetDevicePort(int, out int)
Obtains the port of an active device.

Parameter Type Description
device int The device identifier value

port The port where the device is
connected

return value int

•	 kINVALIDDEVICEERROR: The
device is not listed in the device
table

•	 kNOERROR(0): The above error did
not occur

int error = aasp.GetDevicePort(int device_id, out int
port)

19
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Device Parameter Values and Commands
The device is a construct that contains the communication parameters needed to communicate with a physical device. The parameter
commands are used to change those parameters. Because a device might need to communicate with different protocols at the same
time, storage is allocated for all protocols. Not all programmers implement all parameters.

Device Parameter Values

Name Value Description

DeviceProtocol 0

Protocol used by the device (uint):
0 = Protocol not used
1 = SPI
2 = I2C
3 = Manchester
4 = Pulses

DeviceDelayAfterEepromWrite 1 Delay between EEPROM writes, in seconds (float)

DeviceOutputType 2

Output of the device (uint):
0 = Output not used
1 = Analog
2 = PWM
3 = SENT
4 = Other

DeviceDelayAfterPowerOn 3 Delay before commands at power-up, in seconds (float)

DeviceNeedPowerOnUnlock 4 Unlock required at power-up (bool)

DeviceUnlockAddresses 5 Addresses of the unlock register (uint)

DeviceUnlockCodes 6 Unlock code (uint[])

DeviceUnlockCodesWidth 7 Width of unlock code (uint)

DeviceNumberOfIndirectMemories 8 Device number of indirect memories (uint)

DeviceHasCommunicationEnable 9 Device has communication enabled (bool)

DeviceCommunicationEnableAddress 10 Device communication-enable address (uint)

DeviceCommunicationEnableMask 11 Device communication-enable mask (uint)

DeviceCommunicationEnableActiveState 12 Device communication-enable active state (bool)

DeviceCommunicationEnableInAccessCode 13 Device communication-enable is the lsb of the access code (bool)

DeviceProgramPulsesRequired 14 Device requires programming pulses (uint)

DeviceProgramPulseVoltage 15 Voltage level for program pulses, in V (float)

DeviceProgramPulseWidth 16 Width in seconds of program pulses (float)

DeviceProgramPulseDelay 17 Width in seconds of delay between program pulses (float)

DeviceProgramPulseOutputType 18

Location of application of program pulse (uint):
0 = Program pulses not applied
1 = Program pulses on VCC
2 = Program pulses on VOUT
3 = Program pulses on other

DevicePrologueWriteAddresses 19 Location of write during the prologue (uint[])

DevicePrologueWriteValues 20 Content for write during the prologue (uint[])

DevicePrologueReadAddresses 21 Location of read during the prologue (uint[])

DevicePrologueReadValues 22 Content for read during the prologue (uint[])

DevicePrologueReadMasks 23 Content to mask from the read during the prologue (uint[])

DeviceEpilogueWriteAddresses 24 Location of write during the epilogue (uint[])

DeviceEpilogueWriteValues 25 Content of write during the epilogue (uint[])

DeviceLowestEEPROMAddress 26 Lowest EEPROM address (uint)

Continued on next page...

20
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Name Value Description
DeviceHighestEEPROMAddress 27 Highest EEPROM address (uint)

DeviceName 28 Device name (string)

DeviceInformation 29 Device information (string)

DeviceDisableEEPROMWrites 30 Disable writing to the device EEPROM (uint)

DeviceOutputReadAddress 31 Location to read the digital output (uint)

DeviceOutputIsSigned 32 Sign of the digital output (bool)

DeviceOutputReadMask 33 Bits to read for the digital output (uint)

DeviceIndirectReadAddressRegister 34 Indirect read address (uint)

DeviceIndirectReadAddressMask 35 Reads address mask (uint)

DeviceIndirectReadDataRegister 36 Read data register (uint)

DeviceIndirectReadDataWidth 37 Width of the data to be read (uint)

DeviceIndirectReadDataDirection 38 If the msb is the lowest address, the value is true (bool)

DeviceIndirectReadControlRegister 39 Read-data control register (uint)

DeviceIndirectReadCommand 40 Read-data command (uint[])

DeviceIndirectReadStatusRegister 41 Read-data status register (uint)

DeviceIndirectReadStatusMask 42 Read-data status mask (uint[])

DeviceIndirectReadStatus 43 Read-data status (uint[])

DeviceIndirectWriteAddressRegister 44 Indirect-write address (uint)

DeviceIndirectWriteAddressMask 45 Write-address mask (uint)

DeviceIndirectWriteDataRegister 46 Write-data register (uint)

DeviceIndirectWriteDataWidth 47 Width of the data to be written (uint)

DeviceIndirectWriteDataDirection 48 If the msb is the lowest address, the value is true (bool)

DeviceIndirectWriteControlRegister 49 Write-data control register (uint)

DeviceIndirectWriteCommand 50 Write-data command (uint[])

DeviceIndirectWriteStatusRegister 51 Write-data status register (uint)

DeviceIndirectWriteStatusMask 52 Write-data status mask (uint[])

DeviceIndirectWriteStatus 53 Write-data status (uint[])

DeviceIndirectMemoryWidth 54 Width of the indirect memory to be read or written (uint)

DeviceDirectMemoryWidth 55 Width of the data register to be directly read or written (uint)

DeviceProgramPulseRisingSlewRate 56 Slew rate of the rising program pulse, in V/ms (float)

DeviceProgramPulseFallingSlewRate 57 Slew rate of the falling program pulse, in V/ms (float)

I2C Parameter Values

Name Value Description
I2CClockFrequency 1000 I2C clock frequency, in Hz (uint)

I2CAddress 1001 I2C address of the device (uint)

I2CRegisterWidth 1002 Size of the register read or write (uint)

I2CByteAddressing 1003 Indicates if the device has byte addressing (uint)

I2CHasCRC 1004 Indicates if the device has a cyclic redundancy check (CRC) (bool)

... continued from previous pageDevice Parameter Values

21
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Manchester Parameter Values

Name Value Description
ManchesterSyncSize 2000 Size of the initial synchronization, in bits (uint)

ManchesterCommandSize 2001 Size of the command, in bits (uint)

ManchesterIDSize 2002 Size of the identifier, in bits (uint)

ManchesterFieldSelectSize 2003 Size of the field select, in bits (uint)

ManchesterAddressSize 2004 Size of the address, in bits (uint)

ManchesterReadDataSize 2005 Size of the read data, in bits (uint)

ManchesterWriteDataSize 2006 Size of the write data, in bits (uint)

ManchesterStatusSize 2007 Size of the status in a read response, in bits (uint)

ManchesterCRCSize 2008 Size of the CRC, in bits (uint)

ManchesterCommandOutput 2009

Location where the Manchester pulses are applied (uint):
0 = Not applied
1 = VCC
2 = VOUT, push-pull
3 = VOUT, open-drain; requires a pull-up
4 = Other

ManchesterCommandEnableType 2010

Method required to enable communication with the device (uint):
0 = Not specified
1 = Raise VCC
2 = Overdrive
3 = PWM function pulse
4 = SENT function pulse
5 = Trigger SENT and function pulse
6 = ASENT function pulse
7 = SSENT short function pulse
8 = SSENT long function pulse
12 = Raise VCC and overdrive
13 = Raise VCC and PWM function pulse
14 = Raise VCC and SENT function pulse
15 = Raise VCC and trigger SENT and function pulse
16 = Raise VCC and ASENT function pulse
17 = Raise VCC and SSENT short function pulse
18 = Raise VCC and SSENT long function pulse

ManchesterDelayAfterCommandEnable 2011 Delay before first command after raising VCC to command-enable voltage, in seconds
(float)

ManchesterCommandEnableVccVoltage 2012 Voltage level to which VCC is raised when performing a command-enable operation
(float)

ManchesterCommandEnableVOutLevel 2013 Logical state to which VOUT is raised when performing a command-enable operation
(bool)

ManchesterHandlesMultipleCommands 2014 If set to true, multiple commands can be sent without use of program-enable cycling
(bool)

ManchesterHasWriteResponse 2015 If the device has a write response, the value is true; only useful for EEPROM writes
(bool)

ManchesterWriteResponseLevel 2016 Logical state to which the output transitions for the write response: 0 = high to low;
1 = low to high (bool)

ManchesterBitRate 2017 Bit rate, in bits per second (uint)

ManchesterSlewRate 2018 Slew rate, in V/ms (float)

ManchesterHighLevelVoltage 2019 Manchester high voltage (float)

ManchesterLowLevelVoltage 2020 Manchester low voltage (float)

ManchesterTriggerWidth 2021 Width of trigger, in seconds (float)

ManchesterDelayWidth 2022 Delay after trigger, in seconds (float)

Continued on next page...

22
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Name Value Description
ManchesterAuxPulseWidth 2023 Width of auxiliary (aux) pulse, in seconds (float)

ManchesterHighDelayWidth 2024 Width of high-voltage delay, in seconds (float)

ManchesterLowDelayWidth 2025 Width of low-voltage delay, in seconds (float)

ManchesterBitTimesBeforeCommand 2026 Number of bit times before the command (uint)

ManchesterBitTimesAfterCommand 2027 Number of bit times after the command (uint)

ManchesterDelayAfterRead 2028 Delay after read, before next command, in seconds (float)

ManchesterDelayAfterWrite 2029 Delay after write, before next command, in seconds (float)

ManchesterCommandRetries 2031 Number of command retries: If a read fails or a write does not receive a write
response, the command is retried (uint)

ManchesterNeedPull-upForRead 2032
If the device needs a pull-up during a read event, set to true; used when the device
typically has a push-pull driver, except when responding to commands; has an open-
drain driver (bool)

ManchesterResponseInput 2033

Location where the Manchester input is received (uint):
0 = None
1 = VOUT
2 = Analog input
3 = Digital input
4 = ICC
5 = Other

ManchesterID 2100 Manchester ID (uint)

ManchesterFieldSelect 2101 Field select value (uint)

SPI Parameter Values

Name Value Description
SPIClockFrequency 3000 SPI clock frequency, in Hz (uint)

SPIMSBFirst 3001 SPI msb is first when true; otherwise, lsb is first (bool)

SPIMode 3002 SPI mode (0 through 3) (uint)

SPISaferSPI 3003 If the device is using SafeSPI, the value is true (bool)

SPITransferSize 3004 Width of each transfer, in number of bits (uint)

SPIWriteCommand 3005 Bit pattern of write command (uint)

SPIReadCommand 3006 Bit patterns of read command (uint)

SPICommandFieldSize 3007 Width of command (uint)

SPICommandFieldShift 3008 Command shift (uint)

SPIAddressFieldSize 3009 Width of address (uint)

SPIAddressFieldShift 3010 Address shift (uint)

SPIDataFieldSize 3011 Width of data (uint)

SPIDataFieldShift 3012 Data shift (uint)

SPICRCFieldSize 3013 Width of CRC (uint)

... continued from previous pageManchester Parameter Values

23
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SENT Parameter Values

Name Value Description
SENTNumberOfNibbles 5000 Number of nibbles in SENT message (uint)

SENTTickTime 5001 Tick time, in seconds (float)

SENTIncludeSCNInCRC 5002 Include the status and control nibble in the CRC (bool)

SENTType 5003

Type of SENT (uint):
0 = Streaming SENT
1 = Triggered SENT
2 = Addressable SENT
3 = Sequential SENT

SENTSensorID 5004 Sensor identifier (uint)

SENTMaxSensorID 5005 Maximum sensor identifier (uint)

SENTTriggerWidth 5006 Width of TSENT trigger, in ticks (uint)

SENTAuxPulseWidth 5007 Width of ASENT and SSENT F_AUX pulse, in ticks (uint)

SENTAddressPulseWidth 5008 Width of ASENT incremental-address (IncAdr) pulse, in ticks; does not include the
five-tick low period (uint)

SENTSlowSerialDataMode 5009
The slow serial data mode (uint):
0 = Standard
1 = Extended

SENTSyncPulseWidth 5010 Width of SSENT F_SYNC pulse, in ticks (uint)

SENTOutputPulseWidth 5011 Width of ASENT and SSENT F_OUTPUT pulses, in ticks (uint)

SENTSamplePulseWidth 5012 Width of ASENT and SSENT F_SAMPLE pulses, in ticks (uint)

Pulse Parameter Values

Name Value Description

PulseOutput 6000

Set locations where pulses are applied and responses are received (uint):
0 = Pulses not applied, responses not received
1 = Applied to VCC, with response on VOUT
2 = Applied to VCC, with response on ICC
3 = Applied to VOUT, with response on VOUT
4 = Other

PulseOnWidth 6001 Set width of pulse-on operation, in seconds (float)

PulseOffWidth 6002 Set width of pulse-off operation, in seconds (float)

PulseVoltageLevels 6003 Voltage levels (float[])

PulseRisingSlewRate 6004 Slew rate of the rising pulses, in V/ms (float)

PulseFallingSlewRate 6005 Slew rate of the falling pulses, in V/ms (float)

24
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SetParameter(int, UInt16, UInt32)
Sets the parameter of a device.

Parameter Type Description

device int The device that has the parameter that
is to be changed

parameter UInt16 The parameter to change

value UInt32 The value to write

return value int

•	 kINVALIDDEVICEERROR: The
device is not listed in the device
table of the programmer

•	 kUNKNOWNPARAMETERERROR:
The parameter is not recognized

•	 kBADPARAMETERVALUEERROR:
The parameter value is not within
the range of permitted values

•	 kNOERROR(0): The above errors
did not occur

int error = aasp.SetParameter(device, parameter,
value);

GetParameter(int, UInt16, out UInt32)
Obtains the parameter from a device.

Parameter Type Description

device int The device that has the parameter
value that is to be obtained

parameter UInt16 The parameter to obtain

value UInt32 The value that was read

return value int

•	 kINVALIDDEVICEERROR: The
device is not listed in the device
table of the programmer

•	 kUNKNOWNPARAMETERERROR:
The parameter is not recognized

•	 kNOERROR(0): The above errors
did not occur

int error = aasp.GetParameter(device, parameter, out
value);

SetFloatParameter(int, UInt16, double)
Sets the float parameter of a device.

Parameter Type Description

device int The device that has the parameter that
is to be changed

parameter UInt16 The parameter to change

value double The value to write

return value int

•	 kINVALIDDEVICEERROR: The
device is not listed in the device
table of the programmer

•	 kUNKNOWNPARAMETERERROR:
The parameter is not recognized

•	 kBADPARAMETERVALUEERROR:
The parameter value is not within
the range of permitted values

•	 kNOERROR(0): The above errors
did not occur

int error = aasp.SetFloatParameter(device, parameter,
value);

GetFloatParameter(int, UInt16, out)
Obtains the parameter from a device.

Parameter Type Description

device int The device that has the parameter
value that is to be obtained

parameter UInt16 The parameter to obtained

value double The value that was read

return value int

•	 kINVALIDDEVICEERROR: The
device is not listed in the device
table of the programmer

•	 kUNKNOWNPARAMETERERROR:
The parameter is not recognized

•	 kNOERROR(0): The above errors
did not occur

int error = aasp.GetFloatParameter(device, parameter,
out value);

25
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SetStringParameter(int, UInt16, string)
Sets the parameter of a device.

Parameter Type Description

device int The device that has the parameter that
is to be changed

parameter UInt16 The parameter to change

value string The value to write

return value int

•	 kINVALIDDEVICEERROR: The
device is not listed in the device
table of the programmer

•	 kUNKNOWNPARAMETERERROR:
The parameter is not recognized

•	 kBADPARAMETERVALUEERROR:
The parameter value is not within
the range of permitted values

•	 kNOERROR(0): The above errors
did not occur

int error = aasp.SetStringParameter(device,
parameter, value);

GetStringParameter(int, UInt16, out string)
Obtains the parameter from a device.

Parameter Type Description

device int The device that has the parameter
value that is to be obtained

parameter UInt16 The parameter to obtain

value string The value that was read

return value int

•	 kINVALIDDEVICEERROR: The
device is not listed in the device
table of the programmer

•	 kUNKNOWNPARAMETERERROR:
The parameter is not recognized

•	 kNOERROR(0): The above errors
did not occur

int error = aasp.GetStringParameter(device,
parameter, out value);

SetArrayParameter(int, UInt16, UInt32[])
Sets the array parameter of a device.

Parameter Type Description

device int The device that has the parameter that
is to be changed

parameter UInt16 The parameter to change

value UInt32[] The value to write

return value int

•	 kINVALIDDEVICEERROR: The
device is not listed in the device
table of the programmer

•	 kUNKNOWNPARAMETERERROR:
The parameter is not recognized

•	 kBADPARAMETERVALUEERROR:
The parameter value is not within
the range of permitted values

•	 kNOERROR(0): The above errors
did not occur

int error = aasp.SetArrayParameter(device, parameter,
value);

GetArrayParameter(int, UInt16, out UInt32[])
Obtains the array parameter from a device.

Parameter Type Description

device int The device that has the parameter
value that is to be obtained

parameter UInt16 The parameter to obtain

value UInt32[] The value that was read

return value int

•	 kINVALIDDEVICEERROR: The
device is not listed in the device
table of the programmer

•	 kUNKNOWNPARAMETERERROR:
The parameter is not recognized

•	 kNOERROR(0): The above errors
did not occur

int error = aasp.GetArrayParameter(device, parameter,
out value);

26
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SetFloatArrayParameter(int, UInt16, double[])
Sets the float array parameter of a device.

Parameter Type Description

device int The device that has the parameter that is to
be changed

parameter UInt16 The parameter to change

value double[] The value to write

return value int

•	 kINVALIDDEVICEERROR: The device
is not listed in the device table of the
programmer

•	 kUNKNOWNPARAMETERERROR: The
parameter is not recognized

•	 kBADPARAMETERVALUEERROR: The
parameter value is not within the range
of permitted values

•	 kNOERROR(0): The above errors did
not occur

int error = aasp.SetFloatArrayParameter(device,
parameter, value);

GetFloatArrayParameter(int, UInt16, out double[])
Obtains the float array parameter from a device.

Parameter Type Description

device int The device that has the parameter
value that is to be obtained

parameter UInt16 The parameter to obtain

value double[] The value that was read

return value int

•	 kINVALIDDEVICEERROR: The
device is not listed in the device
table of the programmer

•	 kUNKNOWNPARAMETERERROR:
The parameter is not recognized

•	 kNOERROR(0): The above errors
did not occur

int error = aasp.GetFloatArrayParameter(device,
parameter, out value);

27
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

These commands are high-level commands used to perform reads
and writes of the memory of a device. For these commands to
succeed, the protocol must be set and the protocol parameters
must match the expectations of the device.
A memory address is a 32-bit unsigned number, where the lower
24 bits are the address and the upper 8 bits are flags that describe
the access. The flags are as follows:

Bit Name Bit
Number(s) Description

WriteOnly 7
When true, the memory location is
write only, it does not respond to a
read

Reserved 6 Unused; reserved for future purposes

Reserved 5 Unused; reserved for future purposes

Reserved 4 Unused; reserved for future purposes

Reserved 3 Unused; reserved for future purposes

MemorySpace 2:0 0 = direct memory access
1 – 7 = indirect memory access group

Possible errors in all memory commands are:
•	 kINVALIDDEVICEERROR when the device is not listed in

the device table of the programmer;
•	 kCOMMUNICATIONPROTOCOLNOTSETERROR when

the communication protocol is not set; and
•	 kBADCOMMUNICATIONPROTOCOLERROR when the

protocol does not support reads or writes of device memory.

Read(int, UInt32, out UInt32)
Reads the contents of a single address from the device.

Parameter Type Description

device int The device that contains the memory that is
to be read

address UInt32 The address to be read

value UInt32 The value that was read

return value int

•	 kCRCERROR: The protocol has a CRC,
and the reply from the device failed the
CRC

•	 kREADTIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTREADTIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-read
operation within the time required

•	 kGENERICREADERROR: The read
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.Read(device, address, out value);

Read(int, UInt32[], out UInt32[])
Reads the contents of the addresses from the device.

Parameter Type Description

device int The device that contains the memory that is
to be read

addresses UInt32[] The addresses to be read

values UInt32[] The values that were read

return value int

•	 kCRCERROR: The protocol has a CRC,
and the reply from the device failed the
CRC

•	 kREADTIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTREADTIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-
read operation within the time required

•	 kGENERICREADERROR: The read
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.Read(device, addresses, out values);

Read(int, UInt32[], out UInt32[], out int[])
Reads the contents of the addresses from the device, and returns
an error for each address read.

Parameter Type Description

device int The device that contains the memory that is
to be read

addresses UInt32[] The addresses to be read

values UInt32[] The values that were read

errors int[] The individual error codes that occurred
during the address reads

return value int

•	 kCRCERROR: The protocol has a CRC,
and the reply from the device failed the
CRC

•	 kREADTIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTREADTIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-read
operation within the time required

•	 kGENERICREADERROR: The read
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.Read(device, addresses, out values,
out errors);

Device Memory Commands

28
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Read(int, UInt32, UInt32, out UInt32[])
Reads the range of addresses from the device.

Parameter Type Description

device int The device that has the memory that is to
be read

start_address UInt32 The first address to be read

end_address UInt32 The last address to be read

values UInt32[] The values that were read

return value int

•	 kCRCERROR: The protocol has a CRC,
and the reply from the device failed the
CRC

•	 kREADTIMEOUTERROR: The device
did not respond within the time required

•	 kINDIRECTREADTIMEOUTERROR:
The address is an indirect address,
and the device did not respond to the
indirect-read operation within the time
required

•	 kGENERICREADERROR: The read
operation failed

•	 kNOERROR(0): The above errors did
not occur

int error = aasp.Read(device, start_address, end_
address, out values);

ReadField(int, UInt32, int, int, out UInt32)

Reads a field from the device.

Parameter Type Description

device int The device that has the memory that is to
be read

address UInt32 The address to be read

high_bit int The highest bit location in the field

low_bit int The lowest bit location in the field

value UInt32 The value that was read

return value int

•	 kCRCERROR: The protocol has a CRC,
and the reply from the device failed the
CRC

•	 kREADTIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTREADTIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-read
operation within the time required

•	 kGENERICREADERROR: The read
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.ReadField(device, address, high_bit,
low_bit, out value);

ReadField(int, UInt32[], int[], int[], out UInt32[])
Reads the fields from the device.

Parameter Type Description

device int The device that has the memory that is to be
read

addresses UInt32[] The addresses to be read

high_bits int[] The highest bit locations in the field

low_bits int[] The lowest bit locations in the field

values UInt32[] The values that were read

return value int

•	 kCRCERROR: The protocol has a CRC,
and the reply from the device failed the
CRC

•	 kREADTIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTREADTIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-read
operation within the time required

•	 kGENERICREADERROR: The read
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.ReadField(device, addresses, high_
bits, low_bits, out values);

ReadField(int, UInt32[],int[], int[], out UInt32[], out int[])
Reads the addresses from the device.

Parameter Type Description

device int The device that has the memory that is to be
read

addresses UInt32[] The addresses to be read

high_bits int[] The highest bit locations in the field

low_bits int[] The lowest bit locations in the field

values UInt32[] The values that were read

errors int[] The individual error codes that occurred
when reading the field

return value int

•	 kCRCERROR: The protocol has a CRC,
and the reply from the device failed the
CRC

•	 kREADTIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTREADTIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-read
operation within the time required

•	 kGENERICREADERROR: The read
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.ReadField(int device, addresses,
high_bits, low_bits, out values, out errors);

29
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Write(int, UInt32, UInt32)
Writes the value to the address on the device.

Parameter Type Description
device int The device that has the memory that is to be

written

address UInt32 The address to be written

value UInt32 The value that is to be written

return
value

int •	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kGENERICWRITEERROR: The write
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.Write(device, address, value);

Write(int, UInt32[], UInt32[])
Writes the values to the addresses on the device.

Parameter Type Description

device int The device that has the memory that is to be
written

addresses UInt32[] The addresses to be written

values UInt32[] The values that are to be written

return
value int

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kGENERICWRITEERROR: The write
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.Write(device, addresses, values);

Write(int, UInt32[], UInt32[], out int[])
Writes the values to the addresses on the device; errror does not
throw an exception.

Parameter Type Description

device int The device that has the memory that is to be
written

addresses UInt32[] The addresses to be written

values UInt32[] The values that are to be written

errors int[] The individual error codes that occurred during
the read of the addresses

return
value int

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kGENERICWRITEERROR: The write
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.Write(device, addresses, values, out
errors);

WriteField(int, UInt32, int, int, UInt32)
Writes the value to the field on the device.

Parameter Type Description

device int The device that has the memory that is to be
written

address UInt32 The address to be written

high_bit int The highest bit location in the field

low_bit int The lowest bit location in the field

value UInt32 The value that is to be written

return
value int

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kGENERICWRITEERROR: The write
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.WriteField(device, address, high_
bit, low_bit, value)

30
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

WriteField(int, UInt32[],int[], int[], UInt32[])
Writes the values to the field on the device.

Parameter Type Description

device int The device that has the memory that is to be
written

addresses UInt32[] The addresses to be written

high_bits int[] The highest bit locations in the fields

low_bits int[] The lowest bit locations in the fields

values UInt32[] The value that is to be written

return
value int

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kGENERICWRITEERROR: The write
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.WriteField(device, addresses, high_
bits, low_bits, values)

WriteField(int, UInt32[],int[], int[], UInt32[], out int[])
Writes the values to the fields on the device; an error does not
throw an exception.

Parameter Type Description

device int The device that has the memory that is to be
written

addresses UInt32[] The addresses to be written

high_bits int[] The highest bit locations in the fields

low_bits int[] The lowest bit locations in the fields

values UInt32[] The value that is to be written

errors int[] The individual error codes that occurred
during the write to the field

return value int

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kGENERICWRITEERROR: The write
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.WriteField(device, addresses, high_
bits, low_bits, values, out errors);

WriteVerify(int, UInt32, UInt32)

Parameter Type Description

device int The device that has the memory that is to be
written

address UInt32 The address to be written

value UInt32 The value that is to be written

return value int

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kGENERICWRITEERROR: The write
operation failed

•	 kNOTVERIFIEDERROR: The verification
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.WriteVerify(device, address, value);

WriteVerify(int, UInt32[], UInt32[])
Writes the values to the addresses on the device, and verifies that
values are correctly written.

Parameter Type Description

device int The device that has the memory that is to be
written

addresses UInt32[] The addresses to be written

values UInt32[] The values that are to be written

return value int

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kGENERICWRITEERROR: The write
operation failed

•	 kNOTVERIFIEDERROR: The verification
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.WriteVerify(device, addresses,
values);

31
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

WriteVerify(int, UInt32[], UInt32[], out int[])
Writes the values to the addresses on the device, and verifies the
values are correctly written.

Parameter Type Description

device int The device that has the memory that is to be
written

addresses UInt32[] The addresses to be written

values UInt32[] The values that are to be written

errors int[] The individual error codes that occurred
during the write to or verification of the field

return value int

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kGENERICWRITEERROR: The write
operation failed

•	 kNOTVERIFIEDERROR:The verification
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.WriteVerify(device, addresses,
values, out errors);

WriteFieldVerify(int, UInt32, int, int, UInt32)
Writes the values to the fields on the device, and verifies the
values are correctly written.

Parameter Type Description

device int The device that has the memory that is to be
written

address UInt32 The address to be written

high_bit int The highest bit location in the field

low_bit int The lowest bit location in the field

value UInt32 The value that is to be written

return value int

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kGENERICWRITEERROR: The write
operation failed

•	 kNOTVERIFIEDERROR:The verification
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.WriteFieldVerify(device, address,
high_bit, low_bit, value)

WriteFieldVerify(int, UInt32[], byte[], byte[], UInt32[])
Writes the values to the fields on the device, and verifies the
values are correctly written.

Parameter Type Description

device int The device that has the memory that is to be
written

addresses UInt32[] The addresses to be written

high_bits int[] The highest bit locations in the field

low_bits int[] The lowest bit locations in the field

values UInt32[] The values that are to be written

return value int

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kGENERICWRITEERROR: The write
operation failed

•	 kNOTVERIFIEDERROR:The verification
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.WriteFieldVerify(device, addresses,
high_bits, low_bits, values);

WriteFieldVerify(int, UInt32[], byte[], byte[], UInt32[], out int[])
Writes the values to the fields on the device, and verifies the
values are correctly written.

Parameter Type Description

device int The device that has the memory that is to be
written

addresses UInt32[] The addresses to be written

high_bits int[] The highest bit locations in the field

low_bits int[] The lowest bit locations in the field

values UInt32[] The values that are to be written

errors int[] The individual error codes that occurred
during the write to or verification of the field

return value int

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR: The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kGENERICWRITEERROR: The write
operation failed

•	 kNOTVERIFIEDERROR:The verification
operation failed

•	 kNOERROR(0): The above errors did not
occur

int error = aasp.WriteFieldVerify(device, addresses,
high_bits, low_bits, values, out errors)

32
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SendPulseSequence(int, bool, int[], out double)
Sends a pulse sequence, and reads the device output, if desired.

Parameter Type Description
device int The device to which the pulses are to be sent

read_result bool If true, the device is read after all the pulses
are sent

indexes int[] An array of indices in the voltage array

results double The value of the device, if requested

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.SendPulseSequence(device, read_
result, indexes, out results);

SendPulse(int, bool, double, double, out double)
Sends a pulse, and reads the device output, if desired.

Parameter Type Description
device int The device to which the pulses are to be sent

read_result bool If true, the device is read after all the pulses
are sent

voltage double The voltage of the pulse, in V

width double The width of the pulse ,in seconds

results double The value of the device, if requested

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.SendPulse(device, read_result,
voltage, width, out results);

SendProgramPulses(int)
Sends the program pulses.

Parameter Type Description
device int The device to which the pulses are to be sent

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.SendProgramPulses(device);

SendPulsesReturnResponses(int, int, int, double, out
bool[])
Sends the pulses, and returns a value of true or false.

Parameter Type Description
device int The device to which the pulses are to be sent

count int The number of pulses to send

pulse_value int The index into the voltage array

sample_
width double The width of the time between pulses, where

sampling occurs

results bool[] The values of the sampling

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.SendPulsesReturnResponses(device,
count, pulse_value, sample_width, out results);

Device Pulse Commands

33
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

ScanVector(int, int, byte[], out byte[])
Performs a scan vector.

Parameter Type Description
device int The device on which the vector is run

count int The number of bits in the vector

vector byte[] The array of bytes containing the vector

results byte[] The results of the scan vector; if an error
occurs, this field might be null

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.ScanVector(device, count, vector,
out results);

LoadScanVector(int, int, int, byte[])
Loads a scan vector.

Parameter Type Description
device int The device on which the vector is run

vector_id int The scan vector identifier

count int The number of bits in the vector

vector byte[] The array of bytes containing the vector

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.LoadScanVector(port, vector_id,
count, vector);

DeleteScanVector(int, int)
Deletes a scan vector.

Parameter Type Description
device int The device on which the vector is run

vector_id int The scan vector identifier

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.DeleteScanVector(device, vector_id)

TransitionVector(int, int, byte[])
Performs a transition vector.

Parameter Type Description
device int The device on which the vector is run

count int The number of bits in the vector

vector byte[] The array of bytes containing the vector

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.TransitionVector(device, count,
vector);

LoadTransitionVector(int, int, int, byte[])
Loads a transition vector.

Parameter Type Description
device int The device on which the vector is run

vector_id int The vector identifier

count int The number of bits in the vector

vector byte[] The array of bytes containing the vector

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.LoadTransitionVector(device, vector_
id, count, vector);

DeleteTransitionVector(int, int)
Deletes a transition vector.

Parameter Type Description
device int The device on which the vector is run

vector_id int The vector identifier

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.DeleteTransitionVector(device,
vector_id)

RunVectorSequence(int, int[])
Runs a scan-and-transition vector sequence.

Parameter Type Description
device int The device on which the vectors are run

sequence int[] The array of vector identifiers

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.RunVectorSequence(device, sequence);

Scan Vector Commands

34
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Device Read, Output Commands
ReadDeviceOutputVoltage(int, out double)
Reads the output voltage from the device.

Parameter Type Description

device int The device that has an output that is to be
read

voltage double The voltage from VOUT, in V

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.ReadDeviceOutputVoltage(device, out
voltage);

ReadDeviceOutputCurrent(int, out double)
Reads the output current from the device.

Parameter Type Description

device int The device that has an output that is to be
read

current double The current from VCC, in A

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.ReadDeviceOutputCurrent(device, out
current);

ReadDeviceOutputDigital(int, out uint)
Reads the output digital value from the device.

Parameter Type Description

device int The device that has an output that is to be
read

digital_
value int The digital value from the device

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.ReadDeviceOutputDigital(device, out
digital_value);

ReadDeviceOutputPWM(int, out double, out double)
Reads the output PWM from the device.

Parameter Type Description

device int The device that has an output that is to be
read

duty_cycle double The duty cycle of the PWM, as a percentage

frequency double The frequency of the PWM, in Hz

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.ReadDeviceOutputPWM(device, out
duty_cycle, out frequency)

ReadDeviceOutputSENT(int, out uint)
Reads the output SENT message from the device, including all
nibbles except the CRC nibble.

Parameter Type Description

device int The device that has an output that is to be
read

message uint The SENT message from the device

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.ReadDeviceOutputSENT(device, out
message)

ReadDeviceOutputSENTSlowSerialData(int, out uint)
Reads the output SENT slow serial data from the device.

Parameter Type Description

device int The device that has an output that is to be
read

data uint The SENT slow serial data from the device

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.ReadDeviceOutputSENTSlowSerialData(d
evice, out data);

SendDeviceOutputSENTTrigger(int, double)
Sends a SENT trigger to the device.

Parameter Type Description

device int The device that has an output that is to be
read

trigger_
width double The width of the SENT trigger, in seconds

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.SendDeviceOutputSENTTrigger(device,
trigger_width);

35
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Device Sample, Output Commands
SampleDeviceOutputVoltage(int, int, double)
Samples the voltage output of the device until the specified num-
ber of samples is collected.

Parameter Type Description

device int The device that has an output that is to be
sampled

samples int The number of samples to collect

rate double The rate of the sample operation, in Hz

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.SampleDeviceOutputVoltage(device,
samples, rate);

SampleDeviceOutputCurrent(int, int, double)
Samples the current output of the device until the specified num-
ber of samples is collected.

Parameter Type Description

device int The device that has an output that is to be
sampled

samples int The number of samples to collect

rate double The rate of the sample operation, in Hz

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.SampleDeviceOutputCurrent(device,
samples, rate);

SampleDeviceOutputDigital(int, int, double)
Samples the digital output of the device until the specified num-
ber of samples is collected.

Parameter Type Description

device int The device that has an output that is to be
sampled

samples int The number of samples to collect

rate double The rate of the sample operation, in Hz

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.SampleDeviceOutputDigital(device,
samples, rate);

SampleDeviceOutputPWM(int, int, double)
Samples the duty cycle and frequency output of the device until
the specified number of samples is collected.

Parameter Type Description

device int The device that has an output that is to be
sampled

samples int The number of samples to collect

rate double The rate of the sample operation, in Hz

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.SampleDeviceOutputPWM(device,
samples, rate);

SampleDeviceOutputSENT(int, int, double)
Samples the SENT output of the device until the specified num-
ber of samples is collected.

Parameter Type Description

device int The device that has an output that is to be
sampled

samples int The number of samples to collect

rate double The rate of the sample operation, in Hz

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.SampleDeviceOutputSENT(device,
samples, rate);

SampleDeviceOutputSENTSlowSerialData(int, int, double)
Samples the SENT slow serial data output of the device until the
specified number of samples is collected.

Parameter Type Description

device int The device that has an output that is to be
sampled

samples int The number of samples to collect

rate double The rate of the sample operation, in Hz

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.SampleDeviceOutputSENTSlowSerialData
(device, samples, rate)

36
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SampleDeviceMemory(int, int, double, UInt32[])
Samples the memory locations of the device until the specified
number of samples is collected.

Parameter Type Description

device int The device that has an output that is to be
sampled

samples int The number of samples to collect

rate double The rate of the sample operation, in Hz

addresses UInt32[] The addresses to sample

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.SampleDeviceMemory(device, samples,
rate, addresses);

ReadSampleBufferVoltages(int, out double[], out bool)
Reads the sample buffer of the device for voltage.

Parameter Type Description

device int The device that has an output that is to be
sampled

samples double[] An array of voltage samples

more_samples bool If there are more samples in the buffer, the
value is true

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.ReadSampleBufferVoltages(device, out
samples, out more_samples);

ReadSampleBufferCurrents(int, out double[], out bool)
Reads the sample buffer of the device for current.

Parameter Type Description

device int The device that has an output that is to be
sampled

samples double[] An array of current samples

more_samples bool If there are more samples in the buffer, the
value is true

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.ReadSampleBufferCurrents(device, out
samples, out more_samples);

ReadSampleBufferDigital(int, out int[], out bool)
Reads the sample buffer of the device for digital output.

Parameter Type Description

device int The device that has an output that is to be
sampled

samples int[] An array of digital samples

more_samples bool If there are more samples in the buffer, the
value is true

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.ReadSampleBufferDigital(int device,
out uint[] value_samples, out bool more_samples)

ReadSampleBufferPWM(int, out double[], out double[], out
bool)
Reads the sample buffer of the device for PWM.

Parameter Type Description

device int The device that has an output that is to be
sampled

duty_cycles double[] An array of duty cycles from the samples

frequencies double[] An array of frequencies from the samples

more_samples bool If there are more samples in the buffer,
the value is true

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.ReadSampleBufferPWM(device, out
duty_cycles, out frequencies, out more_samples);

ReadSampleBufferSENT(int, out uint[], out bool)
Reads the sample buffer of the device for SENT messages.

Parameter Type Description

device int The device that has an output that is to be
sampled

samples uint[] An array of SENT messages

more_samples bool If there are more samples in the buffer, the
value is true

return value int If the call fails, returns an error; otherwise,
returns kNOERROR(0)

int error = aasp.ReadSampleBufferSENT(device, out
samples, out more_samples);

37
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

ReadSampleBufferSENTSSD(int, out uint[], out bool)
Reads the sample buffer of the device for SENT slow serial data.

Parameter Type Description

device int The device that has an output that is
to be sampled

samples uint[] An array of SENT slow serial data

more_samples bool If there are more samples in the
buffer, the value is true

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadSampleBufferSENTSSD(device, out
samples, out more_samples);

ReadSampleBufferMemory(int, out uint[], out bool)
Reads the sample buffer of the device.

Parameter Type Description

device int The device that has an output that is
to be sampled

samples uint[] An array of memory location contents

more_samples bool If there are more samples in the
buffer, the value is true

return value int If the call fails, returns an error;
otherwise, returns kNOERROR(0)

int error = aasp.ReadSampleBufferMemory(device, out
samples, out more_samples);

38
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

The commands that operate on a port are grouped into the
AASP_Port class. This grouping prevents the need to retain and
pass the port number as a parameter for each command. For any
command in this class, if an error occurs, an error code is not
returned; rather, an exception is thrown with the error included.

Port Power Commands

SetVccOn(double, bool)
Sets the VCC port to the desired voltage.

Parameter Type Description
voltage double The voltage at which VCC is to be set

unlock_device bool If the access codes are to be sent to
the devices, the value is true

If the call fails, an exception is thrown

aasp_port.SetVccOn(voltage, unlock_device);

SetVccOff()
Performs turn-off of the port.

Parameter Type Description
If the call fails, an exception is
thrown

aasp_port.SetVccOff();

GetVcc()
Obtains the voltage on the VCC line of the port.

Parameter Type Description
return value double The actual voltage of VCC

If the call fails, an exception is thrown

double voltage = aasp_port.GetVcc();

GetIcc()
Obtains the current being supplied to the port.

Parameter Type Description

return value double The actual current being supplied on
VCC, in mA

If the call fails, an exception is thrown

double current = aasp_port.GetIcc();

Port Feature Values and Commands
The different port features that can be set or obtained from
the port. Not all features are available on all ports or program-
mers. If a feature is not available on the port or programmer a
kUNKNOWNPARAMETERERROR exception is thrown. If the
value given to set a feature is not within the range of valid values,
a kBADPARAMETERVALUEERROR exception is thrown.
When a feature is set, the hardware updates to reflect the new
value.

Port Feature Values

Name
Fea-
ture
ID

Description

PortVoutPull-upSelection 0
Pull-up used on VOUT (uint):
0 = off
> 0 = hardware specific

PortVoutPull-upVoltage 1 Voltage used on VOUT pull-
up (float)

PortInputHighThreshold 2 Input high-threshold voltage
(float)

PortInputLowThreshold 3 Input low-threshold voltage
(float)

PortGPIOVoltage 4 GPIO voltage (float)

PortGPIOPull-upSelection 5

Pull-up used on the GPIO
bus (uint):
0 = off
> 0 = hardware specific

PortI2CVoltage 6 I2C bus voltage (float)

PortI2CPull-upSelection 7

Pull-up used on the I2C bus
(uint):
0 = off
> 0 = hardware specific

PortSPIVoltage 8 SPI bus voltage (float)

PortVoutPull-downSelection 9

Pull-down used on VOUT
(uint):
0 = off
> 0 = hardware specific

PortVoutCapacitorSelection 10

Capacitor used on VOUT:
0 = off
> 0 = hardware specific
(uint)

PortVccBypassCapacitorEnable 11 Bypass capacitor used on
VCC (bool)

PortVccRisingSlewRate 12 Slew rate for the rising VCC,
in V/ms (float)

PortVccFallingSlewRate 13 Slew rate for the falling VCC,
in V/ms (float)

AASP_PORT COMMANDS

39
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SetPortFeature(UInt16, UInt32)
Sets the feature of a port.

Parameter Type Description
feature UInt16 The port feature to change

value UInt32 The value to write

If the call fails, an exception is thrown

aasp_port.SetPortFeature(feature, value);

GetPortFeature(UInt16)
Obtains the feature from a port.

Parameter Type Description
feature UInt16 The port feature to change

return value UInt32 The value that was read

If the call fails, an exception is thrown

UInt32 value = aasp_port.GetPortFeature(feature);

SetPortFloatFeature(UInt16, double)
Sets the float feature of a port.

Parameter Type Description
feature UInt16 The port feature to change

value double The value to write

If the call fails, an exception is thrown

aasp_port.SetPortFloatFeature(feature, value);

GetPortFloatFeature(UInt16)
Obtains the feature from a port.

Parameter Type Description
feature UInt16 The port feature to change

return value double The value that was read

If the call fails, an exception is thrown

double value = aasp_port.
GetPortFloatFeature(feature);

Port Properties
All of the port features can be accessed through properties of the
AASP_Port class. This means that they can be read and written as
if they were variables.

PortVoutPull-upSelection
Selects the pull-up used on VOUT.

aasp_port.PortVoutPull-upSelection = 1;

PortVoutPull-upVoltage
Voltage used on the VOUT pull-up.

aasp_port.PortVoutPull-upVoltage = 5.0;

PortInputHighThreshold
High-threshold voltage of the input.

aasp_port.PortInputHighThreshold = 2.5;

PortInputLowThreshold
Low-threshold voltage of the input.

aasp_port.PortInputLowThreshold = 1.0;

PortGPIOVoltage
Voltage used on the GPIO drivers and pull-ups.

aasp_port.PortGPIOVoltage = 5.0;

PortGPIOPull-upSelection
Selection of pull-up used on the GPIOs.

aasp_port.PortGPIOPull-upSelection

PortI2CVoltage
Voltage used on the I2C drivers and pull-ups.

aasp_port.PortI2CVoltage = 3.3;

40
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

PortI2CPull-upSelection
Selection of pull-up used on the I2C bus.

aasp_port.PortI2CPull-upSelection = 1;

PortSPIVoltage
Voltage used on the SPI drivers.

aasp_port.PortSPIVoltage = 5.0;

PortVoutPull-downSelection
Selection of pull-down used on VOUT.

aasp_port.PortVoutPull-downSelection = 1;

PortVoutCapacitorSelection
Selection of capacitor used on VOUT.

aasp_port.PortVoutCapacitorSelection = 0;

PortVccBypassCapacitorEnable
Selection of bypass capacitor used on VCC.

aasp_port.PortVccBypassCapacitorEnable = false;

PortVccRisingSlewRate
Slew rate of the rising VCC, in V/ms.

aasp_port.PortVccRisingSlewRate = 1.0;

PortVccFallingSlewRate
Slew rate of the falling VCC, in V/ms.

aasp_port.PortVccFallingSlewRate = 1.0;

41
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SetPortBitsDirections(UInt32)
Sets the direction of the port bits (1 = output; 0 = input).

Parameter Type Description

value UInt32 The direction of the port GPIO bits
(1 = output; 0 = input)

If the call fails, an exception is thrown

aasp_port.SetPortBitsDirections(value);

WritePortOutputBits(UInt32)
Writes the values to the output bits.

Parameter Type Description
value UInt32 The value to be written to the GPIO bits

If the call fails, an exception is thrown

aasp_port.WritePortOutputBits(value);

SetPortOutputBits(UInt32)
Sets the bits in the output to 1 that are set to 1 in the mask; does
not set any bits that are set to 0 in the mask.

Parameter Type Description

mask UInt32 The mask of the bits in the GPIO that are
to be set: 1 = set; 0 = no action

If the call fails, an exception is thrown

aasp_port.SetPortOutputBits(mask);

ClearPortOutputBits(UInt32)
Sets the bits in the output to 0 that are set to 1 in the mask; does
not clear any bits that are set to 0 in the mask.

Parameter Type Description

mask UInt32 The mask of the bits in the GPIO that are
to be cleared: 1 = cleared; 0 = no action

If the call fails, an exception is thrown

aasp_port.ClearPortOutputBits(mask);

TogglePortOutputBits(UInt32)
Toggles the bits in the output that are set to 1 in the mask; does
not toggle any bits that are set to 0 in the mask.

Parameter Type Description

mask UInt32 The mask of the bits in the GPIO that are
to be toggled: 1 = toggled; 0 = no action

If the call fails, an exception is thrown

aasp_port.TogglePortOutputBits(mask);

ReadPortOutputBits()
Reads the state of the output bits, and returns the values.

Parameter Type Description
return value UInt32 The state of the output bits

If the call fails, an exception is thrown

UInt32 value = aasp_port.ReadPortOutputBits();

ReadPortInputBits()
Reads the input bits, and returns the values.

GPIO Port Commands

42
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

AASP_DEVICE COMMANDS
The commands that operate on a device are grouped into the
AASP_Device class. This grouping prevents the need to remem-
ber and pass the device ID as a parameter to the methods. Each
method in this class does not return an error code; rather, an
exception is thrown with the error in it.

Device Commands

GetProgrammer()
Returns the programmer to which the device is attached.

Parameter Type Description

return value AASP The AASP object to which the device is
connected

If the call fails, an exception is thrown

AASP aasp = aasp_device.GetProgrammer ();

GetPort()
Returns the port to which the device is attached.

Parameter Type Description

return value AASP_
PORT

The AASP_Port object to which the device
is connected

If the call fails, an exception is thrown

AASP_Port aasp_port = aasp_device.GetPort ();

GetDeviceID()
Returns the identifier of the device.

Parameter Type Description
return value int The identifier of the device

If the call fails, an exception is thrown

int device_id = aasp_device.GetDeviceID ();

43
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Device Parameters
The device is a construct that contains the communication parameters needed to talk to a physical device. The parameter commands
are used to change those parameters. Because a device might need to communicate via different protocols at the same time, storage is
allocated for all protocols. Not all programmers implement all parameters.

Device Parameter Values

Name Value Description

DeviceProtocol 0

Protocol used by the device (uint):
0 = No protocol
1 = SPI
2 = I2C
3 = Manchester
4 = Pulses

DeviceDelayAfterEepromWrite 1 Delay between EEPROM writes, in seconds (float)

DeviceOutputType 2

Output of the device (uint):
0 = No output
1 = Analog
2 = PWM
3 = SENT
4 = Other

DeviceDelayAfterPowerOn 3 Delay before commands at power-up, in seconds (float)

DeviceNeedPowerOnUnlock 4 Unlock required at power-up (bool)

DeviceUnlockAddresses 5 Addresses of the unlock register (uint)

DeviceUnlockCodes 6 Unlock code (uint[])

DeviceUnlockCodesWidth 7 Width of unlock code (uint)

DeviceNumberOfIndirectMemories 8 Device number of indirect memories (uint)

DeviceHasCommunicationEnable 9 Device has communication enable (bool)

DeviceCommunicationEnableAddress 10 Device communication-enable address (uint)

DeviceCommunicationEnableMask 11 Device communication-enable mask (uint)

DeviceCommunicationEnableActiveState 12 Device communication-enable active state (bool)

DeviceCommunicationEnableInAccessCode 13 Device communication enable is the lsb of the access code (bool)

DeviceProgramPulsesRequired 14 Device requires programming pulses (uint)

DeviceProgramPulseVoltage 15 Voltage level for program pulses, in V (float)

DeviceProgramPulseWidth 16 Width of program pulses, in seconds (float)

DeviceProgramPulseDelay 17 Width of delay between program pulses, in seconds (float)

DeviceProgramPulseOutputType 18

Location where the program pulse is applied (uint):
0 = No program pulses
1 = Program pulses on VCC
2 = Program pulses on VOUT
3 = Program pulses on other

DevicePrologueWriteAddresses 19 Location where write occurs during the prologue (uint[])

DevicePrologueWriteValues 20 Data to be written during the prologue (uint[])

DevicePrologueReadAddresses 21 Location where read occurs during the prologue (uint[])

DevicePrologueReadValues 22 Data to read during the prologue (uint[])

DevicePrologueReadMasks 23 Data to mask from the read during the prologue (uint[])

DeviceEpilogueWriteAddresses 24 Location where a write occurs during the epilogue (uint[])

DeviceEpilogueWriteValues 25 Data to be written during the epilogue (uint[])

Continued on next page...

44
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Name Value Description
DeviceLowestEEPROMAddress 26 The lowest EEPROM address (uint)

DeviceHighestEEPROMAddress 27 The highest EEPROM address (uint)

DeviceName 28 Device name (string)

DeviceInformation 29 Device information (string)

DeviceDisableEEPROMWrites 30 Disable writing to the device EEPROM (uint)

DeviceOutputReadAddress 31 Location where read occurs for the digital output (uint)

DeviceOutputIsSigned 32 Indicates if the digital output is signed (bool)

DeviceOutputReadMask 33 Indicates what bits to read for the digital output (uint)

DeviceIndirectReadAddressRegister 34 The indirect read address (uint)

DeviceIndirectReadAddressMask 35 The read address mask (uint)

DeviceIndirectReadDataRegister 36 Read-data register (uint)

DeviceIndirectReadDataWidth 37 Width of the data to be read (uint)

DeviceIndirectReadDataDirection 38 If the msb is the lowest address, the value is true (bool)

DeviceIndirectReadControlRegister 39 Read-data control register (uint)

DeviceIndirectReadCommand 40 Read-data command (uint[])

DeviceIndirectReadStatusRegister 41 Read-data status register (uint)

DeviceIndirectReadStatusMask 42 Read-data status mask (uint[])

DeviceIndirectReadStatus 43 Read-data status (uint[])

DeviceIndirectWriteAddressRegister 44 The indirect-write address (uint)

DeviceIndirectWriteAddressMask 45 The write-address mask (uint)

DeviceIndirectWriteDataRegister 46 The write-data register (uint)

DeviceIndirectWriteDataWidth 47 Width of the data to be written (uint)

DeviceIndirectWriteDataDirection 48 If the msb is the lowest address, the value is true (bool)

DeviceIndirectWriteControlRegister 49 The write-data control register (uint)

DeviceIndirectWriteCommand 50 The write-data command (uint[])

DeviceIndirectWriteStatusRegister 51 The write-data status register (uint)

DeviceIndirectWriteStatusMask 52 The write-data status mask (uint[])

DeviceIndirectWriteStatus 53 The write-data status (uint[])

DeviceIndirectMemoryWidth 54 Width of the indirect memory to be read or written (uint)

DeviceDirectMemoryWidth 55 Width of a data register to be directly read or written (uint)

DeviceProgramPulseRisingSlewRate 56 Slew rate of the rising program pulse, in V/ms (float)

DeviceProgramPulseFallingSlewRate 57 Slew rate of the falling program pulse, in V/ms (float)

I2C Parameter Values

Name Value Description
I2CClockFrequency 1000 I2C clock frequency, in Hz (uint)

I2CAddress 1001 I2C address of the device (uint)

I2CRegisterWidth 1002 Size of the register read or write (uint)

I2CByteAddressing 1003 Indicates if the device has byte addressing (uint)

I2CHasCRC 1004 Indicates if the device has a CRC (bool)

... continued from previous pageDevice Parameter Values

45
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Manchester Parameter Values

Name Value Description
ManchesterSyncSize 2000 Size of the initial synchronization, in bits (uint)

ManchesterCommandSize 2001 Size of the command, in bits (uint)

ManchesterIDSize 2002 Size of the ID, in bits (uint)

ManchesterFieldSelectSize 2003 Size of the field select, in bits (uint)

ManchesterAddressSize 2004 Size of the address, in bits (uint)

ManchesterReadDataSize 2005 Size of the read data, in bits (uint)

ManchesterWriteDataSize 2006 Size of the write data, in bits (uint)

ManchesterStatusSize 2007 Size of the status in a read response, in bits (uint)

ManchesterCRCSize 2008 Size of the CRC, in bits (uint)

ManchesterCommandOutput 2009

Locations where Manchester pulses are applied and responses are received (uint):
0 = No Manchester
1 = VCC, responses on VOUT
2 = Analog VOUT, responses on VOUT
3 = Digital open-drain VOUT, responses on VOUT; requires a pull-up
4 = Digital push-pull VOUT, responses on VOUT
5 = Current, command on VCC, responses on ICC
6 = Other

ManchesterCommandEnableType 2010

Which method is needed for enabling communication with the device (uint):
0 = None
1 = VCC overvoltage
2 = Overdrive
3 = PWM function pulse
4 = SENT function pulse
5 = Trigger SENT and function pulse
6 = Auxiliary function pulse
7 = Assert GPIO
12 = VCC overvoltage and overdrive
13 = VCC overvoltage and PWM function pulse
14 = VCC overvoltage and SENT function pulse
15 = VCC overvoltage and trigger SENT and function pulse
16 = VCC overvoltage and auxiliary function pulse

ManchesterDelayAfterCommandEnable 2011 Delay before first command after raising VCC to command-enable voltage, in seconds (float)

ManchesterCommandEnableVccVoltage 2012 Voltage to which VCC is to be raised when performing a command-enable operation (float)

ManchesterCommandEnableVOutLevel 2013 Logical state to which VOUT is to be raised when performing a command-enable operation
(bool)

ManchesterHandlesMultipleCommands 2014 If multiple commands can be sent without the need for a program-enable cycle, set value to
true (bool)

ManchesterHasWriteResponse 2015 If the device has a write response, the value is true; only useful for EEPROM writes (bool)

ManchesterWriteResponseLevel 2016 Logical state to which the output transitions for the write response: 0 = high to low; 1 = low to
high (bool)

ManchesterBitRate 2017 Bit rate, in bits per second (uint)

ManchesterSlewRate 2018 Slew rate, in V/ms (float)

ManchesterHighLevelVoltage 2019 Manchester high voltage (float)

ManchesterLowLevelVoltage 2020 Manchester low voltage (float)

ManchesterTriggerWidth 2021 Width of trigger, in seconds (float)

ManchesterDelayWidth 2022 Delay after trigger, in seconds (float)

ManchesterAuxPulseWidth 2023 Width of auxiliary pulse, in seconds (float)

ManchesterHighDelayWidth 2024 Width of high-voltage delay, in seconds (float)

Continued on next page...

46
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Name Value Description
ManchesterLowDelayWidth 2025 Width of low-voltage delay, in seconds (float)

ManchesterBitTimesBeforeCommand 2026 Number of bit times before the command (uint)

ManchesterBitTimesAfterCommand 2027 Number of bit times after the command (uint)

ManchesterDelayAfterRead 2028 Delay after read, before next command, in seconds (float)

ManchesterDelayAfterWrite 2029 Delay after write, before next command, in seconds (float)

ManchesterDelayAfterEEPROMWrite 2030 If device does not have write response, delay after EEPROM write, in seconds (float)

ManchesterCommandRetries 2031 If a read fails or a write does not receive a write response, number of command retries (uint)

ManchesterNeedPull-upForRead 2032
If the device needs a pull-up during a read operation, set to true; used when the device
typically has a push-pull driver; except when responding to commands, it has an open-drain
driver (bool)

ManchesterID 2100 Manchester ID (uint)

ManchesterFieldSelect 2101 Field select value (uint)

SPI Parameter Values

Name Value Description
SPIClockFrequency 3000 SPI clock frequency, in Hz (uint)

SPIMSBFirst 3001 SPI: If value is true, msb is first;
otherwise, lsb is first (bool)

SPIMode 3002 SPI mode (0 through 3) (uint)

SPISaferSPI 3003 If the device is using SafeSPI, the
value is true (bool)

SPITransferSize 3004 Width of each transfer, in number of
bits (uint)

SPIWriteCommand 3005 Bit pattern of the write command
(uint)

SPIReadCommand 3006 Bit pattern of the read command
(uint)

SPICommandFieldSize 3007 Width of the command (uint)

SPICommandFieldShift 3008 The command shift (uint)

SPIAddressFieldSize 3009 Width of the address (uint)

SPIAddressFieldShift 3010 The address shift (uint)

SPIDataFieldSize 3011 Width of the data (uint)

SPIDataFieldShift 3012 The data shift (uint)

SPICRCFieldSize 3013 Width of the CRC (uint)

SENT Parameter Values

Name Value Description

SENTNumberOfNibbles 5000 Number of nibbles in the SENT
message (uint)

SENTTickTime 5001 Tick time, in seconds (float)

SENTIncludeSCNInCRC 5002 Include the status and control
nibble in the CRC (bool)

SENTType 5003

Type of SENT (uint):
0 = Streaming SENT
1 = Triggered SENT
2 = Addressable SENT
3 = Sequential SENT

SENTSensorID 5004 Sensor identifier (uint)

SENTMaxSensorID 5005 Maximum sensor identifier
(uint)

SENTTriggerWidth 5006 Width of TSENT trigger, in ticks
(uint)

SENTAuxPulseWidth 5007 Width of ASENT and SSENT
F_AUX pulse, in ticks (uint)

SENTAddressPulseWidth 5008
Width of ASENT IncAdr pulse,
in ticks; does not include the
five-tick low period (uint)

SENTSlowSerialDataMode 5009
Slow serial data mode (uint):
0 = Standard
1 = Extended

SENTSyncPulseWidth 5010 Width of SSENT F_SYNC
pulse, in ticks (uint)

SENTOutputPulseWidth 5011
Width of ASENT and SSENT
F_OUTPUT pulse, in ticks
(uint)

SENTSamplePulseWidth 5012
Width of ASENT and SSENT
F_SAMPLE pulse, in ticks
(uint)

... continued from previous pageManchester Parameter Values

47
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Pulse Parameter Values

Name Value Description

PulseOutput 6000

Locations where pulses are applied
and responses are received (uint):
•	 0 = No pulses, no responses
•	 1 = VCC, response on VOUT
•	 2 = VCC, response on Icc
•	 3 = VOUT, response on VOUT
•	 4 = Other

PulseOnWidth 6001 Set width of pulse-on operation, in
seconds (float)

PulseOffWidth 6002 Set width of pulse-off operation, in
seconds (float)

PulseVoltageLevels 6003 Voltage levels (float[])

PulseRisingSlewRate 6004 Slew rate of the rising pulses, in
V/ms (float)

PulseFallingSlewRate 6005 Slew rate of the falling pulses, in
V/ms (float)

Scan Vector Parameter Values

Name Value Description

SCClockFrequency 9000 Scan-vector clock frequency, in Hz
(uint)

SVClockPolarity 9001

Clock active polarity for scan vector
(bool):
•	 false = active high
•	 true = active low

SVClockPhase 9002

Clock phase for scan vector (bool):
•	 false = data are captured upon

the rising edge and output upon
falling edge

•	 true = data are captured upon
the falling edge and output upon
the rising edge

SVOutputPolarity 9003
Output polarity (bool):
•	 false = active low
•	 true = active high

SVEnablePolarity 9004
Scan-enable polarity (bool):
•	 false = active low
•	 true = active high

SVResetBit 9005 GPIO bit used for reset (uint)

Device Parameter Commands
SetParameter(UInt16, UInt32)
Sets the parameter of a device.

Parameter Type Description
parameter UInt16 The parameter to change
value UInt32 The value to write

An exception is thrown for any of the following
conditions::
•	 The device is not listed in the device table of

the programmer
•	 The parameter is not recognized
•	 The parameter value is not within the range

of permitted values

aasp_device.SetParameter(parameter, value);

GetParameter(UInt16)
Obtains the parameter from a device.

Parameter Type Description
parameter UInt16 The parameter to obtain
return value UInt32 The value that was read

An exception is thrown for any of the following
conditions:
•	 The device is not listed in the device table

of the programmer
•	 The parameter is not recognized

UInt32 value = aasp_device.GetParameter(parameter);

SetFloatParameter(UInt16, double)
Sets the float parameter of a device.

Parameter Type Description
parameter UInt16 The parameter to change
value double The value to write

An exception is thrown for any of the following
conditions:
•	 The device is not listed in the device table of

the programmer
•	 The parameter is not recognized
•	 The parameter value is not within the range

of permitted values

aasp_device.SetFloatParameter(parameter, value);

GetFloatParameter(UInt16)
Obtains the parameter from a device

Parameter Type Description
parameter UInt16 The parameter to obtain
return value double The value that was read

An exception is thrown for any of the following
conditions:
•	 The device is not listed in the device table of

the programmer
•	 The parameter is not recognized

double value = aasp_device.
GetFloatParameter(parameter);

48
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SetStringParameter(UInt16, string)
Sets the parameter of a device.

Parameter Type Description
parameter UInt16 The parameter to change

value string The value to write

An exception is thrown for any of the following
conditions:
•	 The device is not listed in the device table

of the programmer
•	 The parameter is not recognized
•	 The parameter value is not within the range

of permitted values

aasp_device.SetStringParameter(parameter, value);

GetStringParameter(UInt16)
Obtains the parameter from a device.

Parameter Type Description
parameter UInt16 The parameter to obtain

return value string The value that was read

An exception is thrown for any of the following
conditions:
•	 The device is not listed in the device table

of the programmer
•	 The parameter is not recognized

string value = aasp_device.
GetStringParameter(parameter);

SetArrayParameter(UInt16, UInt32[])
Sets the array parameter of a device.

Parameter Type Description
parameter UInt16 The parameter to change

value UInt32[] The value to write

An exception is thrown for any of the following
conditions:
•	 The device is not listed in the device table

of the programmer
•	 The parameter is not recognized
•	 The parameter value is not within the range

of permitted values

aasp_device.SetArrayParameter(parameter, values);

GetArrayParameter(UInt16)
Obtains the array parameter from a device.

Parameter Type Description
parameter UInt16 The parameter to obtain

return value UInt32[] The value that was read

An exception is thrown for any of the following
conditions:
•	 The device is not listed in the device table

of the programmer
•	 The parameter is not recognized

UInt32[] value = aasp_device.
GetArrayParameter(parameter);

SetFloatArrayParameter(UInt16, double[])
Sets the float array parameter of a device.

Parameter Type Description
parameter UInt16 The parameter to change

value double[] The value to write

An exception is thrown for any of the
following conditions:
•	 The device is not listed in the device table

of the programmer
•	 The parameter is not recognized
•	 The parameter value is not within the

range of permitted values

aasp_device.SetFloatArrayParameter(parameter,
values);

GetFloatArrayParameter(UInt16)
Obtains the float array parameter from a device.

Parameter Type Description
parameter UInt16 The parameter to obtain

return value double[] The value that was read

An exception is thrown for any of the
following conditions:
•	 The device is not listed in the device table

of the programmer
•	 The parameter is not recognized

double[] value = aasp_device.GetFloatArrayParameter(
parameter);

49
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

All device parameters are accessible through properties of the
AASP_Device class. This means that they can be read and writ-
ten as if they were variables.

DeviceProtocol
Protocol used by the device.

aasp_device.DeviceProtocol

DeviceDelayAfterEepromWrite
Delay between EEPROM writes in seconds.

aasp_device.DeviceDelayAfterEepromWrite

DeviceOutputType
Output of the device.

aasp_device.DeviceOutputType

DeviceDelayAfterPowerOn
Delay before commands at power-up, in seconds.

aasp_device.DeviceDelayAfterPowerOn

DeviceNeedPowerOnUnlock
Device needs to be unlocked during power-on sequence.

aasp_device.DeviceNeedPowerOnUnlock = true;

DeviceUnlockAddresses
Address of the unlock register (uint[]).

aasp_device.DeviceUnlockAddresses

DeviceUnlockCodes
Unlock codes (uint[]).

aasp_device.DeviceUnlockCodes

DeviceUnlockCodesWidth
Unlock codes width (uint).

aasp_device.DeviceUnlockCodesWidth

DeviceNumberOfIndirectMemories
Number of indirect memories of the device (uint).

aasp_device.DeviceNumberOfIndirectMemories

DeviceHasCommunicationEnable
Device has communication enable (bool).

aasp_device.DeviceHasCommunicationEnable

DeviceCommunicationEnableAddress
Device communication-enable address (uint).

aasp_device.DeviceCommunicationEnableAddress

DeviceCommunicationEnableMask
Device communication-enable mask (uint).

aasp_device.DeviceCommunicationEnableMask

DeviceCommunicationEnableActiveState
Device communication-enable active state (bool).

aasp_device.DeviceCommunicationEnableActiveState

DeviceCommunicationEnableInAccessCode
Device communication enable is the last bit of the access code
(bool).

aasp_device.DeviceCommunicationEnableInAccessCode

DeviceProgramPulsesRequired
Device requires programming pulses (uint).

aasp_device.DeviceProgramPulsesRequired

DeviceProgramPulseVoltage
Voltage level for program pulses, in V (float).

aasp_device.DeviceProgramPulseVoltage

Device Properties

50
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

DeviceProgramPulseWidth
Width of the program pulses, in seconds (float).

aasp_device.DeviceProgramPulseWidth

DeviceProgramPulseDelay
Width of the delay between program pulses, in seconds (float).

aasp_device.DeviceProgramPulseDelay

DeviceProgramPulseOutputType
Location of application of the program pulse (uint)

aasp_device.DeviceProgramPulseOutputType

DevicePrologueWriteAddresses
Location where write occurs during the prologue (uint[]).

aasp_device.DevicePrologueWriteAddresses

DevicePrologueWriteValues
Values that are to be written during the prologue (uint[]).

aasp_device.DevicePrologueWriteValues

DevicePrologueReadAddresses
Location where read occurs during the prologue (uint[]).

aasp_device.DevicePrologueReadAddresses

DevicePrologueReadValues
Values that are to be read during the prologue (uint[]).

aasp_device.DevicePrologueReadValues

DevicePrologueReadMasks
Masks that are to be read during the prologue (uint[]).

aasp_device.DevicePrologueReadMasks

DeviceEpilogueWriteAddresses
Location where write occurs during the epilogue (uint[]).

aasp_device.DeviceEpilogueWriteAddresses

DeviceEpilogueWriteValues
Values that are to be written during the epilogue (uint[]).

aasp_device.DeviceEpilogueWriteValues

DeviceLowestEEPROMAddress
The lowest EEPROM address (uint).

aasp_device.DeviceLowestEEPROMAddress

DeviceHighestEEPROMAddress
The highest EEPROM address (uint).

aasp_device.DeviceHighestEEPROMAddress

DeviceName
The device name (string).

aasp_device.DeviceName

DeviceInformation
The device information (string).

aasp_device.DeviceInformation

DeviceDisableEEPROMWrites
Disable writing to the device EEPROM (uint).

aasp_device.DeviceDisableEEPROMWrites

DeviceOutputReadAddress
Location of digital output (uint).

aasp_device.DeviceOutputReadAddress

DeviceOutputIsSigned
If the digital output value is signed, the value is true (bool).

aasp_device.DeviceOutputIsSigned

DeviceOutputReadMask
Mask for the digital output (uint).

aasp_device.DeviceOutputReadMask

DeviceIndirectReadAddressRegister
The indirect read address (uint).

aasp_device.DeviceIndirectReadAddressRegister

DeviceIndirectReadAddressMask
The read-address mask (uint).

aasp_device.DeviceIndirectReadAddressMask

51
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

DeviceIndirectReadDataRegister
The read-data register (uint).

aasp_device.DeviceIndirectReadDataRegister

DeviceIndirectReadDataWidth
Width of the read-data register (uint).

aasp_device.DeviceIndirectReadDataWidth

DeviceIndirectReadDataDirection
If the msb is the lowest address, the value is true (bool).

aasp_device.DeviceIndirectReadDataDirection

DeviceIndirectReadControlRegister
The read-data control register (uint).

aasp_device.DeviceIndirectReadControlRegister

DeviceIndirectReadCommand
The read-data command (uint[]).

aasp_device.DeviceIndirectReadCommand

DeviceIndirectReadStatusRegister
The read-data status register (uint).

aasp_device.DeviceIndirectReadStatusRegister

DeviceIndirectReadStatusMask
The read-data status mask (uint[]).

aasp_device.DeviceIndirectReadStatusMask

DeviceIndirectReadStatus
The read-data status (uint[]).

aasp_device.DeviceIndirectReadStatus

DeviceIndirectWriteAddressRegister
The indirect-write address (uint).

aasp_device.DeviceIndirectWriteAddressRegister

DeviceIndirectWriteAddressMask
The write-address mask (uint).

aasp_device.DeviceIndirectWriteAddressMask

DeviceIndirectWriteDataRegister
The write-data register (uint).

aasp_device.DeviceIndirectWriteDataRegister

DeviceIndirectWriteDataWidth
Width of the data to be written (uint).

aasp_device.DeviceIndirectWriteDataWidth

DeviceIndirectWriteDataDirection
If the msb is the lowest address, the value is true (bool).

aasp_device.DeviceIndirectWriteDataDirection

DeviceIndirectWriteControlRegister
The write-data control register (uint).

aasp_device.DeviceIndirectWriteControlRegister

DeviceIndirectWriteCommand
The write-data command (uint[]).

aasp_device.DeviceIndirectWriteCommand

DeviceIndirectWriteStatusRegister
The write-data status register (uint).

aasp_device.DeviceIndirectWriteStatusRegister

DeviceIndirectWriteStatusMask
The write-data status mask (uint[]).

aasp_device.DeviceIndirectWriteStatusMask

DeviceIndirectWriteStatus
The write-data status (uint[]).

aasp_device.DeviceIndirectWriteStatus

DeviceIndirectMemoryWidth
The width of the indirect memory (uint).

aasp_device.DeviceIndirectMemoryWidth

DeviceDirectMemoryWidth
The width of the direct memory (uint).

aasp_device.DeviceDirectMemoryWidth

52
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

DeviceProgramPulseRisingSlewRate
The slew rate when the program pulse is rising (float).

aasp_device.DeviceProgramPulseRisingSlewRate

DeviceProgramPulseFallingSlewRate
The slew rate when the program pulse is falling (float).

aasp_device.DeviceProgramPulseFallingSlewRate

I2CClockFrequency
I2C clock freqency (uint).

aasp_device.I2CClockFrequency

I2CAddress
I2C device address on the I2C bus (uint).

aasp_device.I2CAddress

I2CRegisterWidth
Size of the register read or write (uint).

aasp_device.I2CRegisterWidth

I2CByteAddressing
Indicates if device is equipped for device byte addressing (bool).

aasp_device.I2CByteAddressing

I2CHasCRC
Indicates if device is equipped to return a CRC with the data (uint).

aasp_device.I2CHasCRC

ManchesterSyncSize
Size of the initial synchronization, in bits (uint).

aasp_device.ManchesterSyncSize

ManchesterCommandSize
Size of the command, in bits (uint).

aasp_device.ManchesterCommandSize

ManchesterIDSize
Size of the ID, in bits (uint).

aasp_device.ManchesterIDSize

ManchesterFieldSelectSize
Size of the field, in bits (uint).

aasp_device.ManchesterFieldSelectSize

ManchesterAddressSize
Size of the address, in bits (uint).

aasp_device.ManchesterAddressSize

ManchesterReadDataSize
Size of the read data, in bits (uint).

aasp_device.ManchesterReadDataSize

ManchesterWriteDataSize
Size of the write data, in bits (uint).

aasp_device.ManchesterWriteDataSize

ManchesterStatusSize
Size of the status of a read response, in bits (uint).

aasp_device.ManchesterStatusSize

ManchesterCRCSize
Size of the CRC, in bits (uint).

aasp_device.ManchesterCRCSize

53
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

ManchesterCommandOutput
Location where the Manchester pulses are applied (uint).

aasp_device.ManchesterCommandOutput

ManchesterCommandEnableType
Method needed to enable communication with the device (uint).

aasp_device.ManchesterCommandEnableType

ManchesterDelayAfterCommandEnable
Delay before first command after raising VCC to command-enable
voltage (float).

aasp_device.ManchesterDelayAfterCommandEnable

ManchesterCommandEnableVccVoltage
Voltage to which VCC is to be raised for performance of a
command-enable operation (float).

aasp_device.ManchesterCommandEnableVccVoltage

ManchesterCommandEnableVOutLevel
Logical state to which VOUT is to be raised for performance of a
command-enable operation (uint).

aasp_device.ManchesterCommandEnableVOutLevel

ManchesterHandlesMultipleCommands
If multiple commands can be sent without the need to perform a
program-enable cycle, the value is true (uint).

aasp_device.ManchesterHandlesMultipleCommands

ManchesterHasWriteResponse
If the device has a write response, the value is true (not 0) (uint).

aasp_device.ManchesterHasWriteResponse

ManchesterWriteResponseLevel
Logical state to which the output transitions for the write
response (uint).

aasp_device.ManchesterWriteResponseLevel

ManchesterBitRate
Manchester bit rate (uint).

aasp_device.ManchesterBitRate

ManchesterSlewRate
Manchester slew rate (float).

aasp_device.ManchesterSlewRate

ManchesterHighLevelVoltage
Manchester high voltage (float).

aasp_device.ManchesterHighLevelVoltage

ManchesterLowLevelVoltage
Manchester low voltage (float).

aasp_device.ManchesterLowLevelVoltage

ManchesterTriggerWidth
Width of Manchester trigger (float).

aasp_device.ManchesterTriggerWidth

ManchesterDelayWidth
Width of Manchester delay (float).

aasp_device.ManchesterDelayWidth

54
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

ManchesterAuxPulseWidth
Width of Manchester auxiliary pulse (float).

aasp_device.ManchesterAuxPulseWidth

ManchesterHighDelayWidth
Width of Manchester high-voltage delay (float).

aasp_device.ManchesterHighDelayWidth

ManchesterLowDelayWidth
Width of Manchester low-voltage delay (float).

aasp_device.ManchesterLowDelayWidth

ManchesterBitTimesBeforeCommand
Number of Manchester bit times before the command (uint).

aasp_device.ManchesterBitTimesBeforeCommand

ManchesterBitTimesAfterCommand
Number of Manchester bit times after the command (uint).

aasp_device.ManchesterBitTimesAfterCommand

ManchesterDelayAfterRead
Manchester delay after read (float).

aasp_device.ManchesterDelayAfterRead

ManchesterDelayAfterWrite
Manchester delay after write (float).

aasp_device.ManchesterDelayAfterWrite

ManchesterDelayAfterEEPROMWrite
Manchester delay after EEPROM write (float).

aasp_device.ManchesterDelayAfterEEPROMWrite

ManchesterCommandRetries
Number of Manchester command retries (uint).

aasp_device.ManchesterCommandRetries

ManchesterNeedPull-upForRead
Manchester need for pull-up for read (bool).

aasp_device.ManchesterNeedPull-upForRead

ManchesterTransmitFlag
Manchester GPIO for transmit flag (uint).

aasp_device.ManchesterTransmitFlag

ManchesterTransmitFlagActiveState
Manchester active state for transmit flag (bool).

aasp_device.ManchesterTransmitFlagActiveState

ManchesterID
Manchester ID (uint).

aasp_device.ManchesterID

ManchesterFieldSelect
Selects which half of the register is to be returned (uint).

aasp_device.ManchesterFieldSelect

SPIClockFrequency
SPI clock freqency (uint).

aasp_device.SPIClockFrequency

SPIMSBFirst
SPI bit order: When true, msb is first; otherwise, lsb is first (uint).

aasp_device.SPIMSBFirst

SPIMode
SPI mode: 0 through 3 (uint).

aasp_device.SPIMode

SPISaferSPI
If the device is using SafeSPI, the value is true (bool).

aasp_device.SPISaferSPI

55
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SPITransferSize
Width of the register, in number of bits (uint).

aasp_device.SPITransferSize

SPIWriteCommand
Bit pattern of the write command (uint).

aasp_device.SPIWriteCommand

SPIReadCommand
Bit pattern of the read command (uint).

aasp_device.SPIReadCommand

SPICommandFieldSize
Size of the command field, in bits (uint)

aasp_device.SPICommandFieldSize

SPICommandFieldShift
The command shift (uint).

aasp_device.SPICommandFieldShift

SPIAddressFieldSize
The address size, in bits (uint).

aasp_device.SPIAddressFieldSize

SPIAddressFieldShift
The address mask (uint).

aasp_device.SPIAddressFieldShift

SPIDataFieldSize
The data size, in bits (uint).

aasp_device.SPIDataFieldSize

SPIDataFieldShift
The data mask (uint).

aasp_device.SPIDataFieldShift

SPICRCFieldSize
The CRC size, in bits (uint).

aasp_device.SPICRCFieldSize

SENTNumberOfNibbles
Number of nibbles in the SENT message (uint).

aasp_device.SENTNumberOfNibbles

SENTTickTime
Tick time of the SENT message (float).

aasp_device.SENTTickTime

SENTIncludeSCNInCRC
Include the status and control nibble in the CRC of the SENT
message (uint).

aasp_device.SENTIncludeSCNInCRC

SENTType
Type of SENT message (uint).

aasp_device.SENTType

SENTSensorID
Sensor identifier of the SENT message (uint).

aasp_device.SENTSensorID

SENTMaxSensorID
Maximum sensor identifier of the SENT message (uint).

aasp_device.SENTMaxSensorID

SENTTriggerWidth
SENT, TSENT: Width of the trigger (uint).

aasp_device.SENTTriggerWidth

SENTAuxPulseWidth
SENT, ASENT, SSENT, SSENT: Width of the long auxiliary
pulse (uint).

aasp_device.SENTAuxPulseWidth

SENTAddressPulseWidth
SENT, ASENT: Width of the address pulse (uint).

aasp_device.SENTAddressPulseWidth

SENTSlowSerialDataMode
SENT: Slow serial data mode: 0 = standard; 1 = extended (uint).

aasp_device.SENTSlowSerialDataMode

56
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SENTSyncPulseWidth
SENT, ASENT: Width of the synchronization pulse (uint).

aasp_device.SENTSyncPulseWidth

SENTOutputPulseWidth
SENT, ASENT: Width of the output pulse (uint).

aasp_device.SENTOutputPulseWidth

SENTSamplePulseWidth
SENT, ASENT: Width of the sample pulse (uint).

aasp_device.SENTSamplePulseWidth

PulseOutput
Location where pulses are applied (uint).

aasp_device.PulseOutput

PulseOnWidth
Sets the width of the pulse-on operation (float).

aasp_device.PulseOnWidth

PulseOffWidth
Sets the width of the pulse-off operation (float).

aasp_device.PulseOffWidth

PulseVoltageLevels
Array of pulse voltages (float[]).

aasp_device.PulseVoltageLevels

PulseRisingSlewRate
Sets the rising pulse slew rate, in V/ms (float).

aasp_device.PulseRisingSlewRate

PulseFallingSlewRate
Sets the falling pulse slew rate, in V/ms (float).

aasp_device.PulseFallingSlewRate

PulseHighLevel
Sets the upper threshold level (float).

aasp_device.PulseHighLevel

PulseLowLevel
Sets the lower threshold level (float).

aasp_device.PulseLowLevel

SCClockFrequency
Clock frequency of the scan vector, in Hz.

aasp_device. SCClockFrequency = 10000000;

SVClockPolarity
Clock active polarity of the scan vector: false = active high;
true = active low.

aasp_device.SVClockPolarity = false;

SVClockPhase
Clock phase of the scan vector: false = data are captured upon
the rising edge and output upon the falling edge; true = data are
captured upon the falling edge and output upon the rising edge.

aasp_device.SVClockPhase = false;

SVOutputPolarity
Output polarity of the scan vector: false = active low;
true = active high.

aasp_device.SVOutputPolarity = true;

SVEnablePolarity
Enable polarity of the scan vector: false = active low;
true = active high.

aasp_device.SVEnablePolarity = false;

SVResetBit
GPIO bit used for reset.

aasp_device.SVResetBit = 4;

57
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

These high-level commands are used to perform reads and writes
of the memory of a device. Successful use of these commands
requires the protocol to be set with protocol parameters that
match the parameters expected by the device.
A memory address is a 32-bit unsigned number, where the lower
24 bits are the address and the upper 8 bits are the flags that
describe the access. The flags are as follows:

Bit Name Bit
Number(s) Description

WriteOnly 7 When true, the memory location is write
only: it does not respond to a read

Reserved 6 Unused; reserved for future purposes

Reserved 5 Unused; reserved for future purposes

Reserved 4 Unused; reserved for future purposes

Reserved 3 Unused; reserved for future purposes

MemorySpace 2:0 0 = direct memory access
1 – 7 = indirect memory access group

Possible exceptions for all memory commands are:
•	 kINVALIDDEVICEERROR: The device is not listed in the

device table of the programmer.
•	 kCOMMUNICATIONPROTOCOLNOTSETERROR: The

communication protocol is not set.
•	 kBADCOMMUNICATIONPROTOCOLERROR: The

protocol does not support the read or write device memory.

Read(UInt32)
Reads the contents of the address from the device.

Parameter Type Description
address UInt32 The address to be read

return value UInt32 The value that was read

exception

•	 kCRCERROR: The protocol has a
CRC, and the reply from the device
failed the CRC

•	 kREADTIMEOUTERROR: The
device did not respond within the time
required

•	 kINDIRECTREADTIMEOUTERROR:
The address is an indirect address,
and the device did not respond to the
indirect-read operation within the time
required

•	 kGENERICREADERROR: The read
operation failed

uint value = aasp_device.Read(address);

Read(UInt32[])
Reads the contents of the addresses from the device.

Parameter Type Description
addresses UInt32[] The addresses to be read

return value UInt32[] The values that were read

exception

•	 kCRCERROR: The protocol has a
CRC, and the reply from the device
failed the CRC

•	 kREADTIMEOUTERROR: The
device did not respond within the time
required

•	 kINDIRECTREADTIMEOUTERROR:
The address is an indirect address,
and the device did not respond to the
indirect-read operation within the time
required

•	 kGENERICREADERROR: The read
operation failed

uint[] values = aasp_device.Read(addresses);

Read(UInt32, UInt32)
Reads the range of addresses from the device.

Parameter Type Description
start_address UInt32 The address to be read

end_address UInt32 The last address to be read

return value UInt32[] The values that were read

exception

•	 kCRCERROR: The protocol has a
CRC, and the reply from the device
failed the CRC

•	 kREADTIMEOUTERROR: The
device did not respond within the time
required

•	 kINDIRECTREADTIMEOUTERROR:
The address is an indirect address,
and the device did not respond to the
indirect-read operation within the time
required

•	 kGENERICREADERROR: The read
operation failed

uint[] values = aasp_device.Read(start_address, end_
address)

Device Memory Commands

58
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

ReadField(UInt32, int, int)
Reads a field from the device.

Parameter Type Description
address UInt32 The address to be read

high_bit int The highest bit location in the field

low_bit int The lowest bit location in the field

return value UInt32 The value that was read

exception

•	 kCRCERROR: The protocol has a
CRC and the reply from the device
failed the CRC

•	 kREADTIMEOUTERROR:The device
did not respond within the time
required

•	 kINDIRECTREADTIMEOUTERROR:
The address is an indirect address,
and the device did not respond to the
indirect-read operation within the time
required

•	 kGENERICREADERROR: The read
operation failed

uint value = aasp_device.ReadField(address, highBit,
lowBit);

ReadField(UInt32[], int[], int[])
Reads the fields from the device.

Parameter Type Description
addresses UInt32[] The addresses to be read

high_bits int[] The highest bit locations in the field

low_bits int[] The lowest bit locations in the field

return value UInt32[] The values that were read

exception

•	 kCRCERROR: The protocol has a
CRC and the reply from the device
failed the CRC

•	 kREADTIMEOUTERROR:The device
did not respond within the time
required

•	 kINDIRECTREADTIMEOUTERROR:
The address is an indirect address,
and the device did not respond to the
indirect-read operation within the time
required

•	 kGENERICREADERROR: The read
operation failed

uint[] values = aasp_device.ReadField(addresses,
high_bits, low_bits);

Write(UInt32, UInt32)
Writes the value to the address on the device.

Parameter Type Description
address UInt32 The address to be written

value UInt32 The value that is to be written

exception

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR:The
device did not respond within the time
required

•	 kINDIRECTWRITETIMEOUTERROR:
The address is an indirect address,
and the device did not respond to the
indirect-write operation within the time
required

•	 kGENERICWRITEERROR: The write
failed

aasp_device.Write(address, value);

Write(UInt32[], UInt32[])
Writes the values to the addresses on the device.

Parameter Type Description
addresses UInt32[] The addresses to be written

values UInt32[] The values that are to be written

exception

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR:The
device did not respond within the time
required

•	 kINDIRECTWRITETIMEOUTERROR:
The address is an indirect address,
and the device did not respond to the
indirect-write operation within the time
required

•	 kGENERICWRITEERROR: The write
operation failed

aasp_device.Write(addresses, values);

59
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

WriteField(UInt32, int, int, UInt32)
Writes the value to the field on the device.

Parameter Type Description
address UInt32 The address to be written

high_bit int The highest bit location in the field

low_bit int The lowest bit location in the field

value UInt32 The value that is to be written

exception

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR:The
device did not respond within the time
required

•	 kINDIRECTWRITETIMEOUTERROR:
The address is an indirect address,
and the device did not respond to the
indirect-write operation within the time
required

•	 kGENERICWRITEERROR: The write
operation failed

aasp_device.WriteField(address, high_bit, low_bit,
value);

WriteField(UInt32[], int[], int[], UInt32[])
Writes the values to the field on the device.

Parameter Type Description
addresses UInt32[] The addresses to be written

high_bits int[] The highest bit locations in the field

low_bits int[] The lowest bit locations in the field

values UInt32[] The values that are to be written

exception

Exceptions are:
•	 kEEPROMWRITEDISABLEDERROR:

EEPROM writes are disabled
•	 kWRITETIMEOUTERROR:The

device did not respond within the time
required

•	 kINDIRECTWRITETIMEOUTERROR
The address is an indirect address,
and the device did not respond to the
indirect-write operation within the time
required

•	 kGENERICWRITEERROR: The write
operation failed

aasp_device.WriteField (addresses, high_bits, low_
bits, values);

WriteVerify(UInt32, UInt32)
Writes the value to the address on the device, and verifies the
value is correctly written.

Parameter Type Description
address UInt32 The address to be written

value UInt32 The value that is to be written

exception

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR:The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kNOTVERIFIEDERROR: The verification
operation failed

•	 kGENERICWRITEERROR: The write
operation failed

aasp_device.WriteVerify (address, value);

WriteVerify(UInt32[], UInt32[])
Writes the values to the addresses on the device, and verifies the
values are correctly written.

Parameter Type Description
addresses UInt32[] The addresses to be written

values UInt32[] The values that are to be written

exception

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR:The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kNOTVERIFIEDERROR: The verification
operation failed

•	 kGENERICWRITEERROR: The write
operation failed

aasp_device.WriteVerify(addresses, values);

60
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

WriteFieldVerify(UInt32, int, int, UInt32)
Writes the value to the field on the device, and verifies the value
is correctly written.

Parameter Type Description
address UInt32 The address to be written

high_bit int The highest bit location in the field

low_bit int The lowest bit location in the field

value UInt32 The value that is to be written

exception

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR:The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kNOTVERIFIEDERROR: The verification
operation failed

•	 kGENERICWRITEERROR: The write
operation failed

aasp_device.WriteFieldVerify(address, high_bit, low_
bit, value);

WriteFieldVerify(UInt32[], int[], int[], UInt32[])
Writes the value to the field on the device, and verifies the value
is correctly written.

Parameter Type Description
addresses UInt32[] The addresses to be written

high_bits int[] The highest bit locations in the field

low_bits int[] The lowest bit locations in the field

values UInt32[] The values that are to be written

exception

•	 kEEPROMWRITEDISABLEDERROR:
EEPROM writes are disabled

•	 kWRITETIMEOUTERROR:The device did
not respond within the time required

•	 kINDIRECTWRITETIMEOUTERROR: The
address is an indirect address, and the
device did not respond to the indirect-write
operation within the time required

•	 kNOTVERIFIEDERROR: The verification
operation failed

•	 kGENERICWRITEERROR: The write
operation failed

aasp_device.WriteFieldVerify(addresses, high_bits,
low_bits, values);

Device Pulse Commands
The device pulse-sequence commands are used to send pulses
on the output that is selected in the PulseOutput parameter. The
PulseVoltage array is an array of voltages that is set up via the
PulseVoltageLevels parameter.

SendPulseSequence(bool, int[])
Sends a pulse sequence, and reads the device output, if desired.

Parameter Type Description

read_result bool If true, the device is read after all the pulses
have been sent

indexes int[] An array of indexes into the voltage array

return value double The value of the device, if requested;
otherwise, 00

exception

•	 kINVALIDDEVICEERROR: The device
is not listed in the device table of the
programmer

•	 kCOMMUNICATIONPROTOCOLNOTSETERROR:
The communication protocol is not set

•	 kBADCOMMUNICATIONPROTOCOLERROR:
The protocol is not set to PulsesProtocol (4)

•	 kOUTOFRANGEERROR: The pulse index
is not within the PulseVoltage array bounds,
or the voltage is out of range of the DAC

double value = aasp_device.SendPulseSequence(read_
result, indexes);

SendPulse(bool, double, double)
Sends a pulse, and reads the device output, if desired.

Parameter Type Description

read_result bool If true, the device is read after the pulse has been
sent

voltage double The voltage of the pulse

width double The width of the pulse, in seconds

return value double The value of the device, if requested;
otherwise, 00

exception

•	 kINVALIDDEVICEERROR: The device
is not listed in the device table of the
programmer

•	 kCOMMUNICATIONPROTOCOLNOTSETERROR:
The communication protocol is not set

•	 kBADCOMMUNICATIONPROTOCOLERROR:
The protocol is not set to PulsesProtocol (4)

•	 kOUTOFRANGEERROR: The pulse index
is not within the PulseVoltage array bounds,
or the voltage is out of range of the DAC

double value = aasp_device.SendPulse(read_result,
voltage, width);

61
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SendProgramPulses()
Sends the program pulses.

aasp_device.SendProgramPulses();

SendPulsesReturnResponses(int, int, double)
Sends the pulses, and returns the results.

Parameter Type Description
count int The number of pulses to send

index int The index into the voltage array

sample_
width double The width between pulses where the sampling

occurs, in seconds

return
value double[] The values of the output of the device

exception

•	 kINVALIDDEVICEERROR: The device is not
listed in the device table of the programmer

•	 kCOMMUNICATIONPROTOCOLNOTSETERROR:
The communication protocol is not set

•	 kBADCOMMUNICATIONPROTOCOLERROR:
The protocol is not set to PulsesProtocol (4)

•	 kOUTOFRANGEERROR: The pulse index is
not within the PulseVoltage array bounds, or
the voltage is out of range of the DAC

public double[] SendPulsesReturnResponses(count,
pulse_value, sample_width);

Scan Vector Commands
Scan vectors are contained within a packed bit array that is serial-
ized and sent to the device under test using the SPI protocol as
SIN (MOSI). The SE (CS) and SCLK lines are controlled by
the program. The input SO (MISO) is read and returned to the
controlling PC.
Transition vectors are byte arrays that contain the state of the
SE (CS), SIN (MOSI), and SCLK lines, and are clocked out by
the program. There is also a reset signal. The SO (MISO) line
is ignored, and a response is not returned to the PC. The bits are
arranged in the SO byte as follows:

7 6 5 4 3 2 1 0
unused unused unused unused reset SCLK SE SIN

ScanVector(int, byte[])
Performs a scan vector.

Parameter Type Description
count int The number of bits in the vector

vector byte[] The array of bytes containing the vector

return value byte[] The results of the scan vector; if an error
occurs, a null value is possible

exception Exception: Failure of the call operation

byte[] results = aasp_device.ScanVector(count,
vector);

LoadScanVector(UInt16, UInt16, byte[])
Loads a scan vector to the programmer. The scan vector identi-
fiers start at 0 and increase to 32767.

Parameter Type Description
vector_id UInt16 The vector identifier

count int The number of bits in the vector

vector byte[] The array of bytes containing the vector

exception Exceptions: Bad vector identifier, vector too
large, out of memory

aasp_device.LoadScanVector(vector_id, count, vector);

DeleteScanVector(UInt16)
Deletes a scan vector.

Parameter Type Description
vector_id UInt16 The vector identifier

exception Exception: Bad or unknown vector identifier

aasp_device.DeleteScanVector(vector_id);

62
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

TransitionVector(int, byte[])
Performs a transition vector.

Parameter Type Description
count int The number of bits in the vector

vector byte[] The array of bytes containing the vector

exception Exception: Failure of the call operation

aasp_device.TransitionVector(count, vector);

LoadTransitionVector(UInt16, UInt16, byte[])
Loads a transition vector to the programmer. The transition iden-
tifiers start at 32768 and increase to 65535.

Parameter Type Description
vector_id UInt16 The vector identifier

count int The number of bits in the vector

vector byte[] The array of bytes containing the vector

exception Exceptions: Bad vector identifier, vector too
large, out of memory

aasp_device.LoadTransitionVector(vector_id, count,
vector);

DeleteTransitionVector(UInt16)
Deletes a transition vector.

Parameter Type Description
vector_id UInt16 The vector identifier

exception Exception: Bad or unknown vector identifier

aasp_device.DeleteTransitionVector(vector_id);

RunVectorSequence(UInt16[])
Runs a scan-and-transition vector sequence.

Parameter Type Description
sequence int[] The array of vector identifiers

exception Exception: Bad or unknown vector identifier

aasp_device.RunVectorSequence(sequence);

Device Read Output Commands

ReadDeviceOutputVoltage()
Reads the output voltage from the device.

Parameter Type Description
return value double The voltage from VOUT, in V

double voltage = aasp_device.
ReadDeviceOutputVoltage();

ReadDeviceOutputCurrent()
Reads the output current from the device.

Parameter Type Description
return value double The current from VCC, in mA

double current = aasp_device.
ReadDeviceOutputCurrent();

ReadDeviceOutputDigital()
Reads the output digital value from the device.

Parameter Type Description

return value int The digital value

exception Exception: Failure of a memory-read
operation

double value = aasp_device.ReadDeviceOutputDigital();

ReadDeviceOutputPWM(out double, out double)
Reads the output PWM from the device.

Parameter Type Description
duty_cycle double The duty cycle of the PWM, as a percentage

frequency double The frequency of the PWM, in Hz

exception Exception: Failure of the call operation

aasp_device.ReadDeviceOutputPWM(out duty_cycle, out
frequency);

ReadDeviceOutputSENT()
Reads the output SENT message from the device.

Parameter Type Description
return value int The SENT message with the CRC removed

exception Exception: Timeout of the SENT read
operation or failure of the CRC operation

uint value = aasp_device.ReadDeviceOutputSENT();

63
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

ReadDeviceOutputSENTSlowSerialData()
Reads the output SENT slow serial data from the device.

Parameter Type Description

return value int The SENT slow serial data with the CRC
removed

exception Exception: Timeout of the SENT read
operation or failure of the CRC operation

uint value = aasp_device.
ReadDeviceOutputSENTSlowSerialData();

SendDeviceOutputSENTTrigger(double)
Sends a SENT trigger to the device.

Parameter Type Description
trigger_width double The width of the SENT trigger, in seconds

exception Exception: Failure of the call operation

aasp_device.SendDeviceOutputSENTTrigger(trigger_
width);

Device Sample Output Commands

SampleDeviceOutputVoltage(int, double)
Samples the voltage output of the device until the specified num-
ber of samples is collected.

Parameter Type Description
samples int The number of samples to collect

rate double The rate of the sample operation, in Hz

exception Exception: Failure of the call operation

aasp_device.SampleDeviceOutputVoltage(samples, rate);

SampleDeviceOutputCurrent(int, double)
Samples the current output of the device until the specified num-
ber of samples is collected.

Parameter Type Description
samples int The number of samples to collect

rate double The rate of the sample operation, in Hz

exception Exception: Failure of the call operation

aasp_device.SampleDeviceOutputCurrent(samples, rate);

SampleDeviceOutputDigital(int, double)
Samples the digital output of the device until the specified num-
ber of samples is collected.

Parameter Type Description
samples int The number of samples to collect

rate double The rate of the sample operation, in Hz

exception Exception: Failure of the call operation

aasp_device.SampleDeviceOutputDigital(samples, rate);

SampleDeviceOutputPWM(int, double)
Samples the duty cycle and frequency output of the device until
the specified number of samples is collected.

Parameter Type Description
samples int The number of samples to collect

rate double The rate of the sample operation, in Hz

exception Exception: Failure of the call operation

aasp_device.SampleDeviceOutputPWM(samples, rate);

64
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

SampleDeviceOutputSENT(int, double)
Samples the SENT output of the device until the specified num-
ber of samples is collected.

Parameter Type Description
samples int The number of samples to collect

rate double The rate of the sample operation, in Hz

exception Exception: Failure of the call operation

aasp_device.SampleDeviceOutputSENT(samples, rate);

SampleDeviceOutputSENTSlowSerialData(int, double)
Samples the SENT slow serial data output of the device until the
specified number of samples is collected.

Parameter Type Description
samples int The number of samples to collect

rate double The rate of the sample operation, in Hz

exception Exception: Failure of the call operation

aasp_device.SampleDeviceOutputSENTSlowSerialData(sam
ples, rate);

SampleDeviceMemory(int, double, UInt32[])
Samples the memory locations of the device until the specified
number of samples is collected.

Parameter Type Description
samples int The number of samples to collect

rate double The rate of the sample operation, in Hz

addresses UInt32[] The addresses to sample

exception Exception: Failure of the call operation

aasp_device.SampleDeviceMemory(samples, rate,
addresses);

ReadSampleBufferVoltages(out double[])
Reads the sample buffer of the device for voltage.

Parameter Type Description
samples double[] The samples

return value bool If there are more samples in the sample
buffer, the value is true

exception Exception: Failure of the call operation

bool more_samples = aasp_device.
ReadSampleBufferVoltages(out samples);

ReadSampleBufferCurrents(out double[])
Reads the sample buffer of the device for current.

Parameter Type Description
samples double[] The samples

return value bool If there are more samples in the sample
buffer, the value is true

exception Exception: Failure of the call operation

bool more_samples = aasp_device.
ReadSampleBufferCurrents (out samples);

ReadSampleBufferDigital(out int[])
Reads the sample buffer of the device for digital output.

Parameter Type Description
samples int[] The samples

return value bool If there are more samples in the sample
buffer, the value is true

exception Exception: Failure of the call operation

bool more_samples = aasp_device.
ReadSampleBufferDigital (out samples);

ReadSampleBufferPWM(out double[], out double[])
Reads the sample buffer of the device for PWM.

Parameter Type Description
duty_cycle_
samples double[] The array of duty cycles that were

sampled

frequency_
samples double[] The array of frequencies that were

sampled

return value bool If there are more samples in the sample
buffer, the value is true

exception Exception: Failure of the call operation

bool more_samples = aasp_device.
ReadSampleBufferPWM(out duty_cycle_samples, out
frequency_samples)

65
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

ReadSampleBufferSENT(out uint[])
Reads the sample buffer of the device for SENT messages.

Parameter Type Description
samples uint[] The samples

return value bool If there are more samples in the sample
buffer, the value is true

exception Exception: Failure of the call operation

bool more_samples = aasp_device.ReadSampleBufferSENT
(out samples);

ReadSampleBufferSENTSSD(out uint[])
Reads the sample buffer of the device for SENT slow serial data.

Parameter Type Description

samples uint[] The samples

return value bool If there are more samples in the sample
buffer, the value is true

exception Exception: Failure of the call operation

bool more_samples = aasp_device.
ReadSampleBufferSENTSSD (out samples);

ReadSampleBufferMemory(out uint[])
Reads the sample buffer of the device.

Parameter Type Description
samples uint[] The samples

return value bool If there are more samples in the
sample buffer, the value is true

exception Exception: Failure of the call operation

bool more_samples = aasp_device.
ReadSampleBufferMemory (out samples);

Device Serial Commands (Crocus)

ReadSerial(uint, ushort, ushort)
Reads the serial stream from the device.

Parameter Type Description
header uint Header of the read command

header bit count ushort Header bit count

read bit count ushort Number of bits to be read

return value uint[] Array of the read values

exception

•	 kREADTIMEOUTERROR:The device
did not respond within the time
required

•	 kGENERICREADERROR: The read
operation failed

WriteSerial (ushort, uint[])
Write the serial stream to the device.

Parameter Type Description
write bit count ushort Number of bits to be written

values uint[] Array of 32-bit words to be written

exception

•	 kREADTIMEOUTERROR:The device
did not respond within the time
required

•	 kGENERICWRITEERROR: The write
operation failed

66
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

UTILITY ROUTINES
Bit-Field Routines

SetField(uint, uint, int, int)
Inserts the contents of a bit field into the data.

Parameter Type Description
data uint The data that contains the bit field

bitfield_value uint The unsigned value of the bit field to be
placed in the data

stop int The high bit number of the field

start int The low bit number of the field

return value uint The data with the bit field inserted into it

uint new_data = AASP.SetField(data, bitfield_value,
stop, start);

SetField(uint, int, int, int)
Inserts the contents of a bit field into the data.

Parameter Type Description
data uint The data that contains the bit field

bitfield_value int The signed value of the bit field to be
placed in the data

stop int The high bit number of the field

start int The low bit number of the field

return value uint The data with the bit field inserted into it

uint new_data = AASP.SetField(data, bitfield_value,
stop, start);

GetField(uint, int, int)
Extracts the contents of a bit field from the data.

Parameter Type Description
data uint The data that contains the bit field

stop int The high bit number of the field

start int The low bit number of the field

return value uint The unsigned bit field

uint bitfield = AASP.GetField(data, stop, start);

GetSignedField(uint, int, int)
Extracts the contents of a bit field from the data.

Parameter Type Description
data uint The data that contains the bit field

stop int The high bit number of the field

start int The low bit number of the field

return value int The signed bit field

int bitfield = AASP.GetSignedField(data, stop,
start);

SignExtendField(uint, int)
Sign-extends a field that is right justified.

Parameter Type Description
data uint The data that contains the bit field

width int The high bit number of the field

return value int The signed bit field

int bitfield = AASP.SignExtendField(data, width);

ConvertUnitString(double)
Converts a double to a string that represents a value that has a
unit.

Parameter Type Description
value double The value

return value string The signed bit field

string val = AASP.ConvertUnitString(value);

67
Allegro MicroSystems
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com

Copyright 2025, Allegro MicroSystems.
Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit

improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the
information being relied upon is current.

Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of
Allegro’s product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor
for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

Revision History
Number Date Description

– June 26, 2025 Initial release

	_Hlk80113920
	_Hlk80113988
	_Hlk80114111
	_Hlk80114168
	_Hlk80114213
	_Hlk80867825
	Description
	AASP Commands
	Creation and Communication
	Programmer-Specific Commands
	Programmer Daughterboard Commands
	Programmer Features
	Programmer Properties
	ADC Commands
	DAC Commands
	Programmer GPIO
	Capture Event Commands
	Capturable Events
	VCC Port Commands
	Port Features
	GPIO Port Commands
	Device Creation, Destruction, and Listing
	Device Parameter Values and Commands
	Device Memory Commands
	Device Pulse Commands
	Scan Vector Commands
	Device Read, Output Commands
	Device Sample, Output Commands

	AASP_Port Commands
	Port Power Commands
	Port Feature Values and Commands
	Port Properties
	GPIO Port Commands

	AASP_Device Commands
	Device Commands
	Device Parameters
	Device Parameter Commands
	Device Properties
	Device Memory Commands
	Device Pulse Commands
	Scan Vector Commands
	Device Read Output Commands
	Device Sample Output Commands
	Device Serial Commands (Crocus)

	Utility Routines
	Bit-Field Routines

	Revision History

