

AHV85000 + AHV85040 Evaluation Board User Guide

DESCRIPTION

The Allegro MicroSystems Half-Bridge Driver-Switch APEK85000-GEJ-01-T is a demonstration board containing two AHV85000 + AHV85040 GaN FET driver chip sets and two GaN FETs configured in a half-bridge configuration.

FEATURES

The APEK85000-GEJ-01-T can be used to perform doublepulse tests, or to interface the half bridge to an existing LC power section, both as shown in this guide.

The isolated AHV85000 + AHV85040 driver chip set does not require secondary-side power or bootstrap components. Gate drive power is supplied to the secondary side from the primary-side supply voltage, V_{DRV} . The amplitude of the gate drive can be varied by varying V_{DRV} between 10.8 V and 13.2 V.

EVALUATION BOARD CONTENTS

• APEK85000-GEJ-01-T evaluation board.

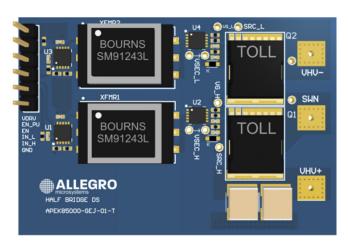


Figure 1: AHV85000 + AHV85040 Evaluation Board (APEK8500-GEJ-01-T)

Table of Contents

Description	1
Features	1
Evaluation Board Contents	1
Using the Evaluation Board	3
Gate Pull-Up and Pull-Down Resistors	3
Enable Sequence	4
Start Sequence	5
Measurement Points	6
Bipolar Gate Drive	7
Propagation Delay	8
Double-Pulse Test	9
Double-Pulse Test Results	10
Schematic	11
PCB Layout	12
Bill of Materials	
Revision History	14

DANGER

DO NOT TOUCH THE BOARD WHEN IT IS ENERGIZED AND ALLOW ALL COMPONENTS TO DISCHARGE COMPLETELY PRIOR HANDLING THE BOARD.

HIGH VOLTAGE CAN BE EXPOSED ON THE BOARD WHEN IT IS CONNECTED TO POWER SOURCE. EVEN BRIEF CONTACT DURING OPERATION MAY RESULT IN SEVERE INJURY OR DEATH.

Ensure that appropriate safety procedures are followed. This evaluation kit is designed for **engineering evaluation in a controlled lab environment and should be handled by qualified personnel ONLY.** Never leave the board operating unattended.

WARNING

Some components can be hot during and after operation. **There is NO built-in electrical or thermal protection on this evaluation kit.** The operating voltage, current, and component temperature should be monitored closely during operation to prevent device damage.

CAUTION

This product contains parts that are susceptible to damage by electrostatic discharge (ESD). Always follow ESD prevention procedures when handling the product.

USING THE EVALUATION BOARD

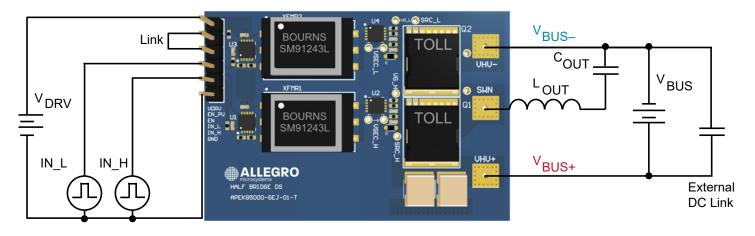


Figure 2: APEK85000-GEJ-01-T Quick Start

- 1. Apply $V_{DRV} = 12$ V.
- 2. Link pins EN_PU and EN (if not using external enable control).
- 3. Apply input gate signals, with adequate dead time, to the IN_L and IN_H inputs.
- 4. Convenient test points are located on the test board as shown in the Measurement Points section. A suitable differential oscilloscope should be used to monitor the high-side gate signal from V_{GH} to V_{SW} .

GATE PULL-UP AND PULL-DOWN RESISTORS

The AHV85040 gate driver has independent output pins for the gate pull-up and gate pull-down, allowing control of the turn-on and turn-off rise and fall times.

The default values for these resistors are:

OUTPU: R7 and R13 = 10Ω

OUTPD: R1 and R15 = 1 Ω

These values can be modified to suit the application.

ENABLE SEQUENCE

The AHV85000 has an open-drain enable pin (EN) to facilitate a system-level wired-AND startup.

When the enable pin is externally pulled low, the driver is forced into a low-power mode. The driver output is pulled low in this mode. In the event of an internal fault condition, such as UVLO or typical startup delay, the EN pin is actively pulled low internally by the driver.

During typical operation, the pin is released by the driver and must be pulled high with an external pull-high resistor. This functionality can be used by the PWM controller as an indication that it can start sending IN pulses to the driver. It is typically wired-AND with the controller enable pin as shown in Figure 3.

The APEK85000-GEJ-01-T evaluation board provides direct access to the EN pin on connector CONN1. Internally, the board contains a 100 k Ω pull-up resistor connected from V_{DRV} to the EN_PU pin on connector CONN1 (see the Schematic section). If external control of the enable function is not required, pins EN and EN_PU must be linked together on CONN1 to make use of the internal 100 k Ω pull-up resistor to enable the driver. If the EN pin is left floating, the drivers do not respond to IN_L or IN_H input signals.

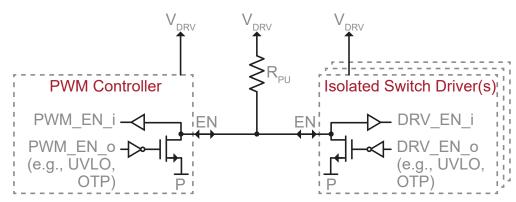


Figure 3: AHV85000 Wired-AND Enable

When the EN pin is pulled low, the driver output is disabled and pulls down the OUTPD pin, regardless of the IN pin level (high or low). The driver goes to a low-power standby mode, and the isolated V_{SEC} bias rail is allowed to discharge. The rate of decay of V_{SEC} depends on the value of the C_{SEC} capacitor.

When the EN pin is subsequently pulled high, the driver reenables, and the isolated V_{SEC} bias rail starts to recharge.

START SEQUENCE

The startup sequence of the AHV85000 chip set is shown in Figure 4. Time t_{START} is defined as the time after which V_{DRV} reaches the UVLO rising level to the AHV85000, releasing the EN internal pull-down.

Any PWM signal applied to IN must remain low until $V_{DRV} > UV$ threshold to avoid parasitic charging of the V_{DRV} rail through the IN pin internal ESD structures.

After V_{DRV} exceeds the UV enable threshold, a startup time delay, t_{START} , is required to charge V_{SEC} and allow all internal circuits to initialize and stabilize. During t_{START} , any IN signal inputs are ignored. EN internal pull-down remains active during t_{START} and becomes disabled (i.e., go open-drain) only when V_{DRV} has reached its UVLO voltage level, all on-chip voltages have stabilized, and the internal t_{START} timer has elapsed. Thus, the EN pin can be used via a shared EN line to flag when t_{START} has elapsed and the driver is ready to respond to PWM signals at the IN pin, as outlined previously in this guide.

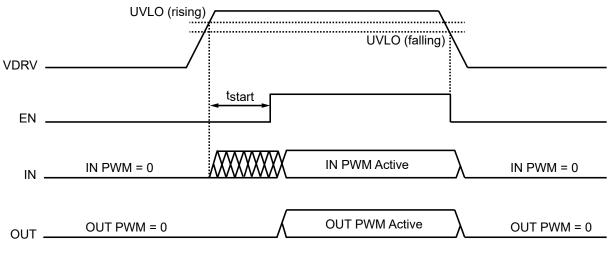
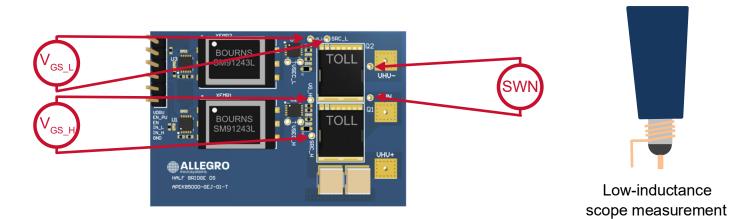


Figure 4: AHV85000 Chip-Set Startup Sequence



MEASUREMENT POINTS

The APEK85000-GEJ-01-T evaluation board contains convenient test points for monitoring the high- and low-side gate drives as well as the switch node, as shown in Figure 5.

When measuring V_{GS_H} , use a differential probe with suitable ratings for the applied bus voltage. The APEK85000-GEJ-01-T EVM uses a bipolar gate drive arrangement, as shown in Figure 5. When measuring V_{GS} , both gate drives are measured relative to the source of their associated GaN FET. Therefore, the off-state voltage is negative.

To avoid pickup of spurious switching noise, it is important to use a low-inductance scope probe ground lead, as shown.

BIPOLAR GATE DRIVE

The high rate of change of voltages and currents in power-switching circuits can create unwanted inductor currents and capacitor voltage drops.

One example is the false turn-on of a FET due to a dV/dt event. In a half-bridge circuit, after the low-side FET has turned-off and a suitable dead time has elapsed, the high-side FET turns on. This produces a rapidly changing switch-node voltage at the drain of the low-side FET. This voltage produces a capacitor current:

$$i_{C_{GD}} = C_{GD} \frac{dV_{DS_L}}{dt},$$

flowing in the gate-drain capacitance, C_{GD} , and driver output; this causes the voltage on the gate of the low-side FET to rise. If this voltage spike peaks beyond the threshold voltage, V_{TH} , the FET conducts. Because the high-side FET also conducts, a potentially destructive shoot-through event can result.

The APEK85000-GEJ-01-T evaluation board uses a bipolar gate drive arrangement that helps mitigate the effects of gate-drain capacitor currents. The secondary supply voltage, V_{SEC} , is a function of the primary supply voltage, V_{DRV} . The Zener diode, CR1, regulates the positive turn-on voltage of the GaN FET. During the turn-off period, the gate voltage is negative with a value of:

$$V_{GS \ OFF} = V_{SEC} - V_{ZENER}.$$

V_{SEC} is typically 8 V.

This negative V_{GS OFF} voltage allows more margin before the threshold voltage is reached.

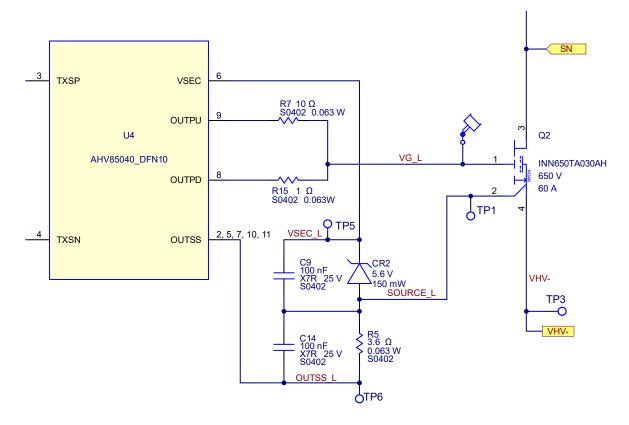


Figure 6: Bipolar Gate Drive Schematic

PROPAGATION DELAY

- $V_{DRV} = 12 V$
- Input = 100 kHz
- $R_{PU} = 10 \Omega, R_{PD} = 1 \Omega$
- Power train unloaded. That is, VHV+=0 V.

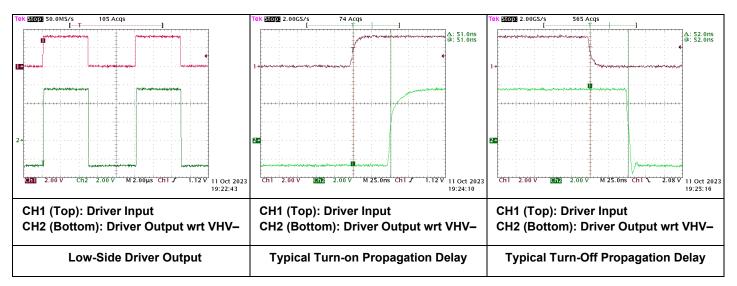


Figure 7: Typical Driver Output at 100 kHz

DOUBLE-PULSE TEST

The double-pulse test is used to evaluate the switching characteristics of a power switch under hard switching but in a safe manner. For a low-side switch, the setup is as shown in Figure 8. The low-side switch is driven with two pulses as shown in Figure 9. The high-side switch can be held off or driven with the inverse of the low-side gate switch (with adequate dead time).

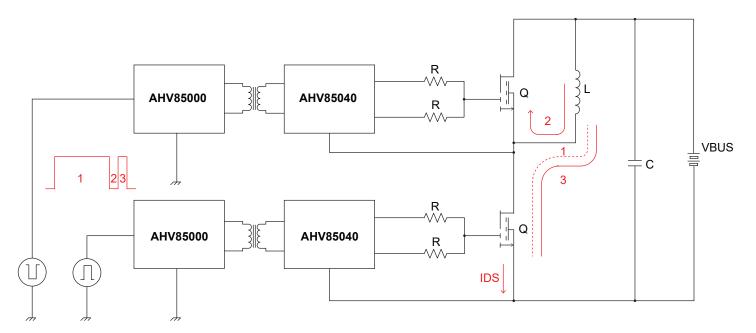
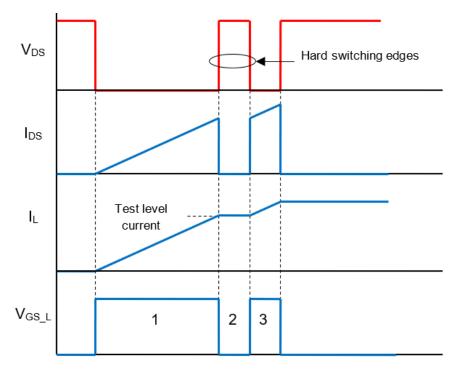
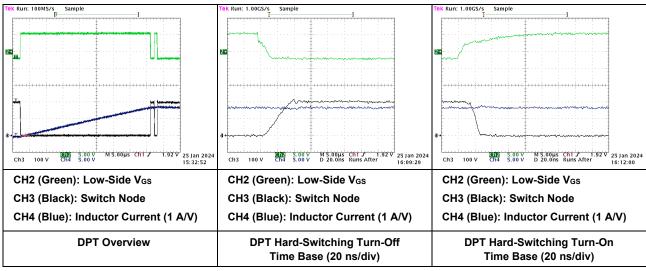



Figure 8: Double-Pulse Test

An inductor is placed in parallel with the high-side switch. The goal of this inductor is to establish the test level current in the low-side switch at the end of the first on pulse (1). The magnitude of the test level current at the end of period 1 is given by:

$$I_L = V_{BUS} \frac{t_{ON}}{L}$$


During period 2, the inductor current naturally decays. The duration of period 2 should not be so long that inductor current deviates significantly from the desired test level.

During period 3, the inductor current again rises. Period 3 should not be so long that the inductor current rises to an excessive level.

The falling edge of pulse 1 is used to examine the hard turn-off characteristics of the switch. The rising edge of pulse 3 is used to examine the hard turn-on characteristics of the switch. By only applying these two pulses, the switches are only on for a very short time and should not overheat.

DOUBLE-PULSE TEST RESULTS

DPT Result 200 V, 8 A

Figure 10: DPT 200 V, 8 A

DPT Result 400 V, 17 A

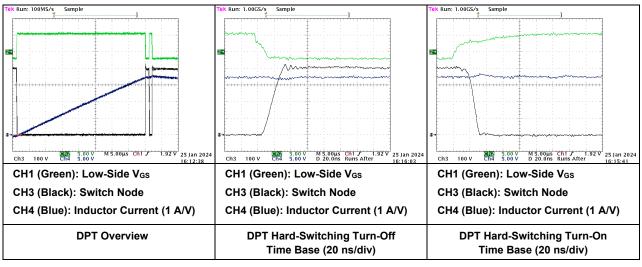


Figure 11: DPT 400 V, 17 A

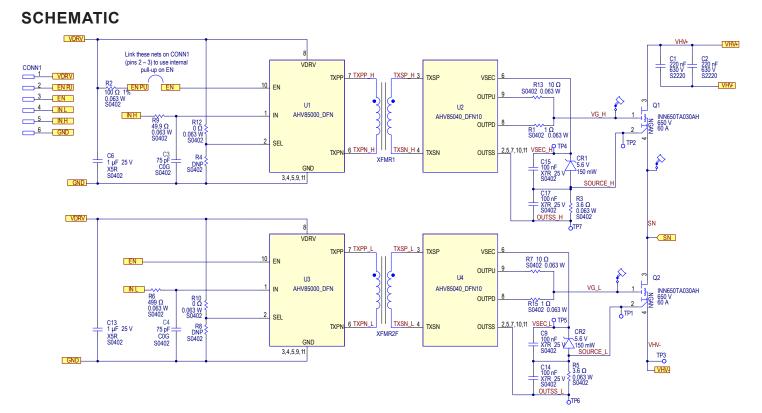
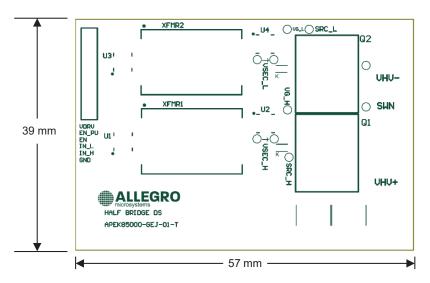
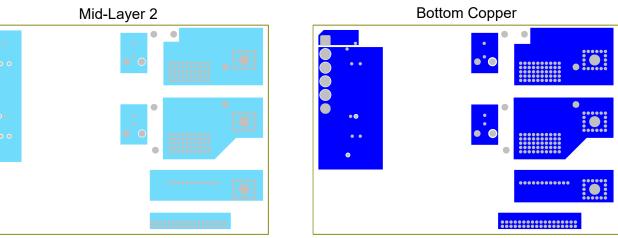



Figure 12: APEK85000-GEJ-01-T Schematic



PCB LAYOUT

Top Copper Mid-Layer 1 • 0 0°0 Mid-Layer 2 **Bottom Copper** \bigcirc

: •

BILL OF MATERIALS

Ref Name	Description	Value	Qty	Manufacturer	Manufacturer PN
CONN1	Pin Header, Board-to-Board, 2.54 mm, 1 Row, 6 Contacts	Connector 6 Way	1	Molex	22284065
R2	RES, 100 Ω, 0.063 W, 1%, 0402	100 Ω	1	Walsin Technologies	SR04X1003FTL
XFMR1, XFMR2	AHV85000 TRANSFORMER	SM91234L	2	Bourns	SM91234L
U1, U3	AHV85000 PRIMARY DFN10_EJ	AHV85000	2	Allegro MicroSystems	AHV85000
U2, U4	AHV85040 SECONDARY DFN10_EJ	AHV85040	2	Allegro MicroSystems	AHV85040
C6, C13	CAP, CER, 1uF, 25V, X5R, 0402	1 µF	2	Murata	GRT155R61E105KE01D
C3, C4	CAP, CER, 75 pF, 50 V, COG/NPO, 0402	75 pF	2	Multicomp	MC0402N750J500CT
C1, C2	Ceramic Capacitor, 0.22 µF, 630 V, 2220, X7R, GRM Series	220 nF	2	Murata	GRM55DR72J224KW01L
Q1, Q2	Innoscience eGaN FET 650V, 60 A, 34 m Ω , 16 nC	INN650TA030AH	2	Innoscience	INN650TA030AH
R10, R12	RES, 0 Ω, 0.063 W, 1%, 0402	0	2	Walsin Technologies	WR04X000PTL
R1, R15	RES, 1 Ω, 0.20 W, 5%, 0402	1	2	KOA Speer	SG73P1EWTTP1R00F
R3, R5	RES, 3.6 Ω, 0.063 W, 1%, 0402	3.6 Ω	2	TE Connectivity	CRG0402F3K6
R7, R13	RES, 10 Ω, 0.20 W, 1%, 0402	10 Ω	2	KOA Speer	SG73P1EWTTP10R0F
R6, R9	RES, 49.9 Ω, 0.063 W, 1%, 0402	49.9 Ω	2	Vishay	CRCW040249R9FKED
R4, R8	RES, 0402, Not Assembled		2		
CR1, CR2	Zener Diode, 5.6 V, 150 mW, SOD-523	5V6	2	Rohm	EDZVFHT2R5.6B
C9, C14, C15, C17	CAP, CER, 100 nF, 25 V, X7R, 0402	100nF	4	Murata	GRM155R71E104KE14D

Table 1: APEK85000-GEJ-01-T Evaluation Board Bill of Materials

Revision History

Number	Date	Description
_	February 20, 2024	Initial release

Copyright 2024, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

<u>Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of</u> Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

