DESCRIPTION

The Allegro MicroSystems half-bridge driver-switch APEK85110KNH-05-T-MH is a demonstration board containing two APEK85110KNH GaN FET drivers and two GaN FETs configured in a half-bridge configuration.

FEATURES

The APEK85110KNH-05-T-MH can be used to perform double-pulse tests or to interface the half bridge to an existing LC power section.

The isolated APEK85110KNH driver does not require secondary side power or bootstrap components. Gate-drive power is supplied to the secondary side from the primary-side supply voltage V_{DRV}. The amplitude of the gate drive can be varied by changing V_{DRV} between 10.8 V and 13.2 V.

EVALUATION BOARD CONTENTS

- APEK85110KNH-05-T-MH Evaluation Board

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>1</td>
</tr>
<tr>
<td>Features</td>
<td>1</td>
</tr>
<tr>
<td>Evaluation Board Contents</td>
<td>1</td>
</tr>
<tr>
<td>Using the Evaluation Board</td>
<td>3</td>
</tr>
<tr>
<td>Gate Pull-Up and Pull-Down Resistors</td>
<td>3</td>
</tr>
<tr>
<td>Enable Sequence</td>
<td>4</td>
</tr>
<tr>
<td>Start Sequence</td>
<td>5</td>
</tr>
<tr>
<td>Measurement Points</td>
<td>6</td>
</tr>
<tr>
<td>Bipolar Gate Drive</td>
<td>7</td>
</tr>
<tr>
<td>Propagation Delay</td>
<td>8</td>
</tr>
<tr>
<td>Double-Pulse Test</td>
<td>9</td>
</tr>
<tr>
<td>Double-Pulse Test Results</td>
<td>10</td>
</tr>
<tr>
<td>Schematic</td>
<td>11</td>
</tr>
<tr>
<td>Layout</td>
<td>12</td>
</tr>
<tr>
<td>Bill of Materials</td>
<td>13</td>
</tr>
<tr>
<td>Related Links</td>
<td>14</td>
</tr>
<tr>
<td>Application Support</td>
<td>14</td>
</tr>
<tr>
<td>Revision History</td>
<td>15</td>
</tr>
</tbody>
</table>
DANGER

DO NOT TOUCH THE BOARD WHEN IT IS ENERGIZED AND ALLOW ALL COMPONENTS TO DISCHARGE COMPLETELY PRIOR TO HANDLING THE BOARD.

HIGH VOLTAGE CAN BE EXPOSED ON THE BOARD WHEN IT IS CONNECTED TO THE POWER SOURCE. EVEN BRIEF CONTACT DURING OPERATION MAY RESULT IN SEVERE INJURY OR DEATH.

Ensure that appropriate safety procedures are followed. This evaluation board is designed for engineering evaluation in a controlled lab environment and should be handled by qualified personnel ONLY. Never leave the board operating unattended.

WARNING

Some components can be hot during and after operation. There is NO built-in electrical or thermal protection on this evaluation board. The operating voltage, current, and component temperature should be monitored closely during operation to prevent device damage.

CAUTION

This product contains parts that are susceptible to damage by electrostatic discharge (ESD). Always follow ESD prevention procedures when handling the product.
 USING THE EVALUATION BOARD

1. Apply $V_{DRV} = 12$ V.
2. Link pins EN_PU and EN (if not using external Enable control).
3. Apply input gate signals, with adequate dead time, to the IN_L and IN_H inputs.
4. Convenient test points are located on the test board as shown in the Measurement Points section. A suitable differential oscilloscope should be used to monitor the high-side gate signal from VGH to VSW.

Gate Pull-Up and Pull-Down Resistors

The APEK85110KNH gate driver has independent output pins for the gate pull-up and gate pull-down, allowing control of the turn-on and turn-off rise and fall times.

The default values for these resistors are:

- **OUTPU**: $R7$ and $R13 = 10$ Ω
- **OUTPD**: $R1$ and $R15 = 1$ Ω

These values can be modified to suit the application.
Enable Sequence

The APEK85110KNH has an open-drain enable pin (EN) to facilitate a system-level wired-AND startup.

When the enable pin is externally pulled low, the driver is forced into a low-power mode. The driver output is pulled low in this mode. In the event of an internal fault condition, such as UVLO or normal startup delay, the EN pin is actively pulled low internally by the driver.

During normal operation, the pin is released by the driver and must be pulled high with an external pull-high resistor. This functionality can be used by the PWM controller as an indication that it can start sending IN pulses to the driver. It is typically wired-AND with the controller enable pin as shown in Figure 3.

The APEK85110KNH-05-T-MH evaluation board provides direct access to the EN pin on connector CONN1. Internally, the board contains a 100 kΩ pull-up resistor connected from VDRV to the EN_PU pin on connector CONN1—see the Schematic section. If external control of the enable function is not required, pins EN and EN_PU must be linked together on CONN1 to make use of the internal 100 kΩ pull-up resistor to enable the driver. If the EN pin is left floating, the drivers do not respond to INL or INH input signals.

![Figure 3: APEK85110KNH Wired-AND Enable](image)

When the EN pin is pulled low, the driver output is disabled and pulls down the OUTPD pin regardless of the IN pin level (high or low). The driver goes to a low-power standby mode, and the isolated V_{SEC} bias rail is allowed to discharge. The rate of decay of V_{SEC} depends on the value of the C_{SEC} capacitor.

When the EN pin is subsequently pulled high, the driver becomes re-enabled, and the isolated V_{SEC} bias rail starts to recharge.
Start Sequence

The startup sequence of the APEK85110KNH is shown in Figure 4. Time t_{START} is defined as the time after which V_{DRV} reaches the UVLO rising level of the APEK85110KNH, releasing the EN internal pull-down.

To avoid parasitic charging of the V_{DRV} rail through the IN pin internal ESD structures, any PWM signal applied to IN must remain low until $V_{\text{DRV}} > UV$ threshold.

After V_{DRV} exceeds the UV enable threshold, a startup time delay t_{START} is required to charge V_{SEC} and allow all internal circuits to initialize and stabilize. During t_{START}, any IN signal inputs are ignored. EN internal pull-down remains active during t_{START} and becomes disabled (i.e., goes open-drain) only when V_{DRV} has reached its UVLO voltage level, all on-chip voltages are stabilized, and the internal t_{START} timer has elapsed. Thus, the EN pin can be used via a shared EN line to flag when t_{START} has elapsed and the driver is ready to respond to PWM signals at the IN pin, as outlined above.

![Figure 4: APEK85110KNH Startup Sequence](image)
Measurement Points

The APEK85110KNH-05-T-MH evaluation board contains convenient test points for monitoring the high- and low-side gate drives as well as the switch node, as shown in Figure 5.

When measuring V_{GS_H}, use a differential probe with suitable ratings for the applied bus voltage. The APEK85110KNH-05-T-MH evaluation board uses a bipolar gate-drive arrangement as shown in the Bipolar Gate Drive section. When measuring V_{GS}, both gate drives are measured relative to the source of their associated GaN FET. Therefore, the off-state voltage is negative.

To avoid pickup of spurious switching noise, it is important to use a low-inductance-scope probe ground lead, as shown.

Figure 5: Measurement Points
Bipolar Gate Drive

Due to the high rate of change of voltages and currents in power-switching circuits, unwanted inductor currents and capacitor voltage drops can be created.

One such example is the false turn-on of a FET due to a $\frac{dv}{dt}$ event. In a half-bridge circuit, after the low-side FET has been turned off and a suitable dead-time has elapsed, the high-side FET is turned on. This produces a rapidly changing switch-node voltage at the drain of the low-side FET. This voltage produces a capacitor current:

$$i_{CGD} = C_{GD} \frac{dV_{DS_L}}{dt}$$

This capacitor current flows in the gate-drain capacitance, C_{GD}, and driver output. It causes the voltage on the gate of the low-side FET to rise. If this voltage spike peaks beyond the threshold voltage, V_{TH}, the FET conducts. Considering that the high-side FET is also conducting, this can result in a potentially destructive shoot-through event.

The APEK85110KHN-05-T-MH evaluation board uses a bipolar gate-drive arrangement that is useful to mitigate the effects of gate-drain capacitor currents. The secondary supply voltage, V_{SEC}, is a function of the primary supply voltage, V_{DRV}. The Zener diode, C_{R2}, regulates the positive turn-on voltage of the GaN FET. During the turn-off period, the gate voltage is negative, with a value of:

$$V_{GS_OFF} = V_{SEC} - V_{ZENER}$$

where V_{SEC} is typically 9 V. This negative V_{GS_OFF} voltage allows more margin before the threshold voltage can be reached.

Figure 6: Bipolar Gate-Drive Schematic
Propagation Delay

- \(V_{DRV} = 12 \, \text{V} \)
- Input = 100 kHz
- \(R_{PU} = 10 \, \Omega, \, R_{PD} = 1 \, \Omega \)
- Power train unloaded; that is, \(VHV+ = 0 \, \text{V} \)

Figure 7: Typical Driver Output at 100 kHz
Double-Pulse Test

The double-pulse test is used to evaluate the switching characteristics of a power switch under hard switching but in a safe manner. For a low-side switch, the setup is shown in Figure 8.

![Double-Pulse Test Diagram](image)

Figure 8: Double-Pulse Test

The low-side switch is driven with two pulses as shown in Figure 9. The high-side switch can be held off or driven with the inverse of the low-side gate switch (with adequate dead time).

![Double-Pulse Test Waveforms](image)

Figure 9: Double-Pulse Test Waveforms

An inductor is placed in parallel with the high-side switch. The goal of this inductor is to establish the test level current in the low-side switch at the end of the first on-pulse (1). The magnitude of the test level current at the end of period 1 is given by:

\[I_L = V_{BUS} \frac{t_{ON,1}}{L} \]
During period 2, the inductor current decays naturally. The duration of period 2 should not be so long that inductor current deviates significantly from the desired test level.

During period 3, the inductor current again rises. Period 3 should not be so long that the inductor current rises to an excessive level.

The falling edge of pulse 1 is used to examine the hard-turn-off characteristics of the switch. The rising edge of pulse 3 is used to examine the hard-turn-on characteristics of the switch. By only applying these two pulses, the switches are only in the on state for a very short period of time and should not overheat.

Double-Pulse Test (DPT) Results

DPT RESULT 200 V, 8 A

DPT RESULT 400 V, 16 A
Figure 12: APEK85110KNH-05-T-MH Schematic
Figure 13: APEK85110KNH-05-T-MH Top Overlay

Figure 14: APEK85110KNH-05-T-MH PCB Copper Layers
BILL OF MATERIALS

Table 1: APEK85110KNH-05-T-MH Evaluation Board Bill of Materials

<table>
<thead>
<tr>
<th>Ref Name</th>
<th>Description</th>
<th>Value</th>
<th>Qty</th>
<th>Manufacturer</th>
<th>Manufacturer PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONN1</td>
<td>Pin Header, 6 Contacts</td>
<td></td>
<td>1</td>
<td>Molex</td>
<td>22284065</td>
</tr>
<tr>
<td>R2</td>
<td>RES, 100 kΩ, 0.063 W, 1%, 0402</td>
<td>100 kΩ</td>
<td>1</td>
<td>Walsin Technologies</td>
<td>SR04X1003FTL</td>
</tr>
<tr>
<td>U1, U2</td>
<td>AHV85110 Single-Channel Isolated GaN FET Driver</td>
<td>AHV85110KNH</td>
<td>2</td>
<td>Allegro MicroSystems</td>
<td>AHV85110KNH</td>
</tr>
<tr>
<td>C8, C13</td>
<td>CAP, CER, 1 µF, 25 V, X5R, 0402</td>
<td>1 µF</td>
<td>2</td>
<td>Murata</td>
<td>GRT155R61E105KE01D</td>
</tr>
<tr>
<td>C3, C4</td>
<td>CAP, CER, 75 pF, 50 V, COG/NPO, 0402</td>
<td>75 pF</td>
<td>2</td>
<td>Multicomp</td>
<td>MC0402N750J500CT</td>
</tr>
<tr>
<td>C1, C2</td>
<td>CAP, CERALINK, 1 µF, 500 V</td>
<td>1 µF</td>
<td>2</td>
<td>TDK EPCOS</td>
<td>B58031US105M062</td>
</tr>
<tr>
<td>Q1, Q2</td>
<td>Nexperia eMode GaN FET 650 V, 29 A, 60 mΩ, 6.2 nC</td>
<td>GAN080-650EBE</td>
<td>2</td>
<td>Nexperia</td>
<td>GAN080-650EBEZ</td>
</tr>
<tr>
<td>R10, R12</td>
<td>RES, 0 Ω, 0.063 W, 1%, 0402</td>
<td>0 Ω</td>
<td>2</td>
<td>Walsin Technologies</td>
<td>WR04X000PTL</td>
</tr>
<tr>
<td>R1, R15</td>
<td>RES, 1 Ω, 0603, 0.25 W, 5%, Anti Surge</td>
<td>1 Ω</td>
<td>2</td>
<td>TE Connectivity</td>
<td>CRGS0603J1R0</td>
</tr>
<tr>
<td>R3, R5</td>
<td>RES, 3.6 kΩ, 0.063 W, 1%, 0402</td>
<td>3.6 kΩ</td>
<td>2</td>
<td>TE Connectivity</td>
<td>CRG0402F3K6</td>
</tr>
<tr>
<td>R7, R13</td>
<td>RES, 10 Ω, 0603, 0.25 W, 1%, Anti Surge</td>
<td>10 Ω</td>
<td>2</td>
<td>Bourns</td>
<td>CMP0603AFX-10R0ELF</td>
</tr>
<tr>
<td>R6, R9</td>
<td>RES, 49.9 Ω, 0.063 W, 1%, 0402</td>
<td>49.9 Ω</td>
<td>2</td>
<td>Vishay</td>
<td>CRCW040249R9FKED</td>
</tr>
<tr>
<td>R4, R8</td>
<td>RES, 0402, Not Assembled</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CR1, CR2</td>
<td>Zener Diode, 5.6 V, 150 mW, SOD-523</td>
<td>5.6 V</td>
<td>2</td>
<td>Rohm</td>
<td>EDZVFHT2R5.6B</td>
</tr>
<tr>
<td>C9, C14, C15, C17</td>
<td>CAP, CER, 100 nF, 25 V, X7R, 0402</td>
<td>100 nF</td>
<td>4</td>
<td>Murata</td>
<td>GRM155R71E104KE14D</td>
</tr>
</tbody>
</table>
RELATED LINKS

APPLICATION SUPPORT
For applications support contact, go to https://www.allegromicro.com/en/about-allegro/contact-us/technical-assistance and navigate to the appropriate region.
Copyright 2023, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro’s product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.