

Datasheet Addendum: Programming Reference

This addendum provides programming instructions and reference tables to the general sales datasheet (A1335) for this device.

For parameters not listed in this addendum, refer to the general sales datasheet. In the event of a conflict between this addendum and the general sales datasheet, this addendum takes precedence.

Table of Contents

Programmable Functionality	2
Interface Structure	3
Primary Serial Interface Registers Reference	5
I ² C Interface Description	17
Writing to Base Addresses with I ² C	
Reading from Base Addresses with I ² C	20
I ² C Data Redundancy Mode	20
SPI Interface	21
SPI Interface Timing	21
SPI Message Frame Size	
Write Cycle Overview	
Read Cycle Overview	
Manchester Serial Interface	
Entering Manchester Communication Mode	
Transaction Types	24
Reading Data Using Manchester Encoding	
Error Checking	
Manchester Message Structure	
Manchester Interface Reference	
Extended Access Protocol	31
Writing to Extended Addresses	
Reading from Extended Addresses	33
Extended Access Command Set	35
SRAM Description and Programming	41
Dual Purpose Registers	41
Angle Resolution for SRAM	41
SRAM Register Reference	43

EEPROM Description and Programming	58
Programming EEPROM	58
Unlocking EEPROM	58
Dual Purpose Registers	59
Self-Test Options	59
Configuration Flags	59
Angle Resolution for EEPROM	59
EEPROM Register Reference	61
Appendix A: SENT Output Description	A-1
SENT Output Mode	A-1
Message Structure	A-2
Synchronization and Calibration Pulse	A-3
Status and Communication Nibble	A-3
SENT Data Nibbles	A-4
SENT CRC Nibble	A-8
SENT Pause Pulse (Optional)	A-8
SENT Output Mode	A-9
Shared SENT Protocol	A-10
Sequential SENT (SSENT) Addressing Protocol	A-12
Adressable SENT (ASENT) Addressing Protocol	A-14
Sensor Magnetic Data Sampling	A-15
Sensor States: Offline, Bus Sync, and Online	A-16
User-Initiated Diagnostic Support	A-16
SENT Message Frame Descriptions	A-18
SENT Data Programming Parameters	A-19
Appendix B: SPI Interface Error Flag Description	B-1

Programmable Functionality

The A1335 provides additional functionality through the primary serial interface, as described in this addendum. Certain of these functions can be performed only while the the processor is not processing angle data (Idle mode), others only while angle data is being processed (Run mode), and some can be performed in either mode. A guide is provided in Table 1. The operating mode is set using the CDS field of the 0x1E register in the Primary Serial Interface.

SRAM based memory is volatile and gets cleared on a reset or repower. EEPROM-based memory is non-volatile and is permanent. Parameters can be tested using SRAM memory and then permanently written to EEPROM after all final settings have been finalized.

Table 1: Modes for Programmable Functions

Activity	Idle Mode	Run Mode
Read EEPROM	\checkmark	\checkmark
Write EEPROM	\checkmark	-
Process Angles	-	\checkmark
Read SRAM	\checkmark	\checkmark
Write SRAM	\checkmark	\checkmark
Change ORATE	\checkmark	-
Read ORATE	\checkmark	\checkmark
Self Tests	\checkmark	-
Set Serial I/O Parameters	\checkmark	\checkmark
Read Errors	\checkmark	\checkmark

Interface Structure

The primary serial interface registers are used for direct writes and reads by the host controller for frequently required information. All forms of communication operate through these registers, whether it be via I²C, SPI, or Manchester. These registers also provide a data and address location for accessing extended memory locations under control of the onboard processor. (EEPROM writing requires additional procedures. For more information, see the EEPROM Description and Programming section.)

- Table 2 lists the primary serial interface registers.
- Table 3 lists all of the bits by address in the primary interface registers.

Address* (Hex)	Name	Usage
02:03	EWA	Extended Write Address
04:07	EWD	Extended Write Data
08:09	EWCS	Extended Write Control and Status
0A:0B	ERA	Extended Read Address
0C:0D	ERCS	Extended Read Control and Status
0E:11	ERD	Extended Read Data
1E:1F	CTRL	Device control
20:21	ANG	Current angle and related data
22:23	STA	Device status
24:25	ERR	Device error status
26:27	XERR	Extended error status
28:29	TSEN	Temperature sensor data
2A:2B	FIELD	Magnetic field strength
34:35	ERM	Device error status masking
36:37	XERM	Extended error status masking

Table 2: Primary Serial Interface Registers (Reserved Registers Not Shown)

*Addresses that span multiple bytes are addressed by the most significant byte (lower address in the address range corresponds to the most significant byte).

Figure 1: Basic address space for direct access by Serial Interface also provides registers for storing target addresses for extended memory areas, as well as for staging data transferred to and from those areas.

Address*	Register			Ad	dressed	Byte (M	SB)			Addressed Byte + 1 (LSB)							
(0x00)	Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
02:03	EWA						Ad	dresses	for Exte	nded Me	emory W	rite					
04:05							Data for Extended Memory Write (EWD[31:16])										
06:07							Data f	or Exten	ded Men	nory Wri	te (EWD	[15:0])					
08:09	EWCS	EXW	-	-	-	-	-	-	-	-	-	-	-	-	-	-	WDN
0A:0B	ERA						Ad	dresses	for Exter	nded Me	emory Re	ead					
0C:0D	ERCS	EXR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	RDN
0E:0F				Data for Extended Memory Read (ERD[31:16])													
10:11							Data f	or Exten	ded Mer	nory Rea	ad (ERD	[15:0])					
1E:1F	CTRL	CE)S	HDR	SFR	-	CSR	CXE	CER	KEYCODE							
20:21	ANG	RIDC	EF	NF	Р						ANG	GLE					
22:23	STA	Reę	gister ide	entifier c	ode	POR	SR	NF	ERR		M	⊃S			PH/	ASE	
24:25	ERR	Reę	gister ide	entifier c	ode	XER	XOV	IER	CRC	NR	AT	AH	AL	OV	UV	MH	ML
26:27	XERR	Reę	gister ide	entifier c	ode	SS	ES	AW	TR	SU	EU	WC	WT	RC	XE	ME	ST
28:29	TSEN	Reę	gister ide	entifier c	ode						TEMPE	RATURE					
2A:2B	FIELD	Reę	Register identifier code							F	IELD ST	RENGT	Н				
34:35	ERM	Reę	Register identifier code			-	XOV	IER	CRC	NR	APE	AH	AL	OV	UV	MH	ML
36:37	XERM	Reg	gister ide	entifier c	ode	SS	ES	AW	TR	SU	EU	WC	WT	RC	XE	ME	ST

Table 3: Primary Serial Interface Registers Bits Map (Reserved Registers Not Shown)

*Addresses that span multiple bytes are addressed by the most significant byte.

Primary Serial Interface Registers Reference

Address: 0x02:0x03 (EWA)

Addr.				0x	02				0x03							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		EWA														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

EWA [15:0] Extended Write Address

Stores an extended address written by the application Master to identify extended access commands to be acted on by the internal processor as Write operations. This includes access to the EEPROM and SRAM. See sections I^2C Extended Access Protocol and Extended Access Command Set for details.

Bit	Value	Description					
15:8	0/1 MSB byte of extended memory address						
7:0	0/1	LSB byte of extended memory address					

Address: 0x04:0x05, 0x06:0x07 (EWD)

Addr.				0x	:04				0x05								
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Addr.		0x06									0x07						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name		EWD															
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

EWD [31:0] Extended Write Data

Stores data the processor writes to the extended addresses identified in $\ensuremath{\mathsf{EWA}}.$

Bit	Value	Description
15:0	0/1	LSB bytes of data for extended memory Write
31:16	0/1	MSB bytes of data for extended memory Write

Address: 0x08:0x09 (EWCS)

Addr.				0x	08				0x09							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	EXW	-	-	-	-	-	-	-	-	-	-	-	-	-	-	WDN
R/W	W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	R
Value	0/1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0/1
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Extended Write Control and Status register. Provides initialization of and status of an extended write.

EXW [15] Extended Execute Write

Initiate Write operation of data in EWD to extended address in EWA

Bit	Value	Description
15	0	Extended address Write not enabled.
15	1	Initiate extended address Write operation.

WDN [0] Write Done to Extended Address

Status of extended address Write. For EEPROM writes, this bit is not asserted until after the programming pulses have been applied to VCC.

Bit	Value	Description
	0	Write to extended address initiated (by EXW).
15	1	Internal processor extended Write operation is complete.

Address: 0x0A:0x0B (ERA)

Addr.		0x0A									0x0B						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name		ERA															
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

ERA [15:0] Extended Read Address

Stores an extended address written by the application Master to identify extended access commands to be acted on by the internal processor as Read operations. This includes access to the EEPROM and SRAM. See sections I²C Extended Access Protocol and Extended Access Command Set for details.

Bit	Value	Description
15:8	0/1	MSB byte of extended memory address.
7:0	0/1	LSB byte of extended memory address.

Address: 0x0C:0x0D (ECRS)

Addr.				0x	0C			0x0D								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	EXR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	RDN
R/W	W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	R
Value	0/1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0/1
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Extended Read Control and Status register. Provides initialization of and status of an extended read.

EXR [15] Extended Execute Read

Initiate Read operation of data from extended address in EWA to ERD.

Bit	Value	Description
15	0	Extended address Read not enabled.
15 1		Initiate extended address Read operation.

RDN [0] Read Done from Extended Address

Status of extended address Read.

Bit	Value	Description
	0	Read from extended address initiated (by EXR).
15	1	Internal processor extended Read operation is complete. Read data is available in ERD registers.

Address: 0x0E:0x0F, 0x10:0x11 (ERD)

Addr.				0x	0E			0x0F								
Bit	31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17										16				
Addr.				0x	10			0x11								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		ERD														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ERD [31:0] Extended Read Data

Stores data the processor has read from the extended addresses identified in ERA.

Bit	Value	Description
15:0	0/1	LSB bytes of data from extended memory Read.
31:16	0/1	MSB bytes of data from extended memory Read.

Address: 0x1E:0x1F (CTRL)

Addr.				0x′	1E				0x1F							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	C	DS	HDR	SFR	_	CSR	CXE	CER			l	KEYO	CODE	Ξ		·
R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	W	W	W	W	W	W	W	W
Value	0/1	0/1	0/1	0/1	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Loaded v initiates	Loaded with a single 16-bit word that: specifies a function, commands execution, and nitiates the function by loading a security code into KEYCODE.															

CDS [15:14] Change Processor State

Commands a change in processor operating mode to the mode specified in the RUN parameter. To initiate, load 0x46 into the KEYCODE parameter. In Idle mode the A1335 ceases to process angles and allows access to advanced programming features. in Run mode, the A1335 is processing angles. Some commands and memory locations can only be accessed in Idle mode (see Table 1 for a guide). It can take up to 128 μ s for the A1335 to transition from Run mode to Idle mode. The A1335 operating state can be read from the STA register to validate when the A1335 has been idled or enabled.

	Bit	Description					
15	14	Description					
0	0	No change in processor state.					
0	1	No change in processor state.					
1	0	Enter Idle mode.					
1	1	Enter Run mode.					

HDR [13] Hard Reset

Commands a hard reset, which resets digital logic, and resets the processor. Reloads values from EEPROM. The analog front end circuitry is not reset. Enabled by loading 0xB9 into KEYCODE parameter.

Bit	Value	Description						
12	0	No action initiated.						
13	1	Initiate hard reset.						

SFR [12] Soft Reset

Commands a soft reset, which restarts the processor, but does not re-read the EEPROM. Enabled by loading 0xB9 into the KEYCODE field.

Bit	Value	Description						
10	0	No action initiated.						
12	1	Initiate soft reset.						

CSR [10] Clear 0x22 (STA) Register

Commands reset of the reset status flags. Enabled by loading 0x46 into KEYCODE parameter.

Bit	Value	Description
0		No action initiated.
10	1	Reset POR and SFR fields in the STA register to 0.

CXE [9] Clear 0x26 (XERR) Register

Commands reset of all previously read extended address error status flags. Enabled by loading 0x46 into KEYCODE parameter. After reading the XERR register, asserting this bit will clear the previously read errors from the XERR register.

Bit	Value	Description						
9	0	No action initiated.						
	1	Reset fields in the XERR register to 0.						

CER [8] Clear 0x24 (ERR) Register

Commands reset of all previously read error status flags. Enabled by loading 0x46 into KEYCODE parameter. After reading the ERR register, asserting this bit will clear the previously read errors from the ERR register.

Bit	Value	Description						
0	0	No action initiated.						
8	1	Reset fields in the ERR register to 0.						

KEYCODE [7:0] Keycode Register

In order to initiate the execution of bits 15:8, the keycode must be entered here. If a Read of this field is attempted, returns 0000 0000.

Bit	Value	Description
7:0	0/1	Security keycode (code varies with command requiring the code)

Address: 0x20:0x21 (ANG)

Addr.	0x20						0x21									
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	RIDC	EF	NF	Р						ANG	LE					
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Value	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Reset	0	1	1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Stores d	Stores data on current angle reading.															

RIDC [15] Register Identifier Code

Used to distinguish this register from following registers that have register identification codes beginning with 1.

Bit	Value	Description
15	0	Identifies this register.

EF [14] Error Flag

General error flag, the logical OR of all unmasked error fields in the 0x24 register. (Masking set in 0x34/0x36 Serial Interface registers or 0x318 register in EEPROM.) (Same as EF field in 0x22 register.)

Bit	Value	Description
	0	No unmasked error bits set in 0x24 register
14 1	1	One or more unmasked error bits set in 0x24 register.

NF [13] New Flag

Indicates if new angle data has been loaded into the ANGLE field since the last Read by the Master. (Set by same status as NF field in 0x22 register.) Reset to 0 after Read by Master.

	Bit	Value	Description
	13	0	No unread angle data in ANGLE field.
		1	ANGLE field has not been read by host.

P [12] Parity

Automatically set by device as the Odd parity of all other bit values in this register (that is, for parity error checking, this field is set to either 1 or 0 such that the sum of the values of all of the bits in the 0x20 register, including the Parity field itself, is an odd number).

Bit	Value	Description
12	0/1	Value required to set odd parity.

ANGLE [11:0] Angle

Most recent angle reading, including the results of any post-processing options selected.

If using I²C, reading automatically loops: after the Master addresses and reads this field, the internal Interface Register Pointer (IRP) is reset to the beginning of the field, so that a continuous stream of angle data can be read without additional Read address commands. Auto looping can be disabled by the I2CM field in EEPROM.

The encoded value in this field, n, is converted as $n \times (360/4096) =$ angular degrees.

Bit	Value	Description
11:0	0/1	Encoded angle reading.

Address: 0x22:0x23 (STA)

Addr.		0x22								0x23						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	Re	Register identifier				SR	NF	ERR	MPS				PHASE			
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Value	1	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Reset	1	0	0	0	1	0	1	1	0	0	0	1	0	0	0	1
Status re	Status register. Indicates current state of the device															

[15:12] Register Identifier Code

Used to identify this register.

Bit	Value	Description
15:12	1000	Identifies this register.

POR [11] Power-On Reset Flag

Indicates the device has experienced a Power-On-Reset (POR) event since the last reset of this field by the CSR field in the 0x1E register.

Bit	Value	Description
	0	No POR has occurred since the last CSR reset
11	1	One or more PORs have occurred since the last CSR reset.

SR [10] Soft Reset Flag

Indicates if a soft reset has occurred since the last reset of this field by the CSR field in the 0x1E register. This includes soft resets caused by: setting the SDR field in the 0x1E register.

Bit	Value	Description
	0	No soft reset has occurred since the last CSR reset
10	1	One or more soft resets have occurred since the last CSR reset.

NF [9] New Flag

Indicates if new angle data has been loaded into the ANGLE field since the last Read by the Master. (Set by same data as the NF field in the 0x30 register.)

Bit	Value	Description
0	0	No unread angle data in ANGLE field.
9	1	Unread angle data in ANGLE field.

ERR [8] Current Error Flag

General error flag, the logical OR of all unmasked error fields in the 0x24 register. (Masking set in 0x34/0x36 Serial Interface registers.) (Same as EF field in 0x30 register.)

Bit	Value	Description
	0	No unmasked error bits set in 0x24 register.
8	1	One or more unmasked error bits set in 0x24 register.

MPS [7:4] Processor Processing Status

General processing status of internal processor.

Bit				Description			
7	6	5	4	Description			
0	0	0	0	Booting.			
0	0	0	1	Booted (and Idle (PHASE = 0) or processing angles (PHASE = 1)).			
1	1	1	0	Processor in self-test mode (non-boot). See PHASE for additional detail.			

PHASE [3:0] Processor Phase Status

Current operating phase of internal processor.

Bit				Description
3	2	1	0	Description
0	0	0	0	ldle.
0	0	0	1	Processing angles.
0	1	0	0	BIST, if MPS = 0xE (self-test).
0	1	1	0	ROM Checksum, if MPS = 0xE (self-test).
0	1	1	1	CVH self-test, if MPS = 0xE (self-test).

Address: 0x24:0x25 (ERR)

Addr.		0x24										0x	25			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	Register identifier			fier	XER	XOV	IER	CRC	NR	AT	AH	AL	OV	UV	MH	ML
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Value	1	0	1	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Reset	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0

Error register. Indicate various current error conditions. When set, can only be cleared via the 0x1E register CER field, hard reset (HDR field), or power-on reset. Can be masked by 0x34 register or EMSK setting in EEPROM (see XER field descriptions for masking exceptions).

[15:12] Register Identifier Code

Used to identify this register.

Bit	Value	Description
15:12	1010	Identifies this register.

XER [11] Extended Error Flag

General error flag, the logical OR of all unmasked error fields in the 0x26 register. (Not masked by 0x36 Serial Interface register field.) In order to fully mask the XER flag, each bit in the 0x26 register must be individually masked.

Bit	Value	Description
	0	No unmasked error fields set in the 0x26 register.
11	1	One or more unmasked error fields set in the 0x26 register.

XOV [10] Extended Access Overflow Flag

Indicates a new access to extended address memory occurred before the previous access had completed; data may be invalid. XOV can be masked by the XO field in the 0x318 register.)

Bit	Value	Description				
10	0	No overflow access detected.				
10	1	One or more overflow accesses detected.				

IER [9] Interface Error

Invalid number of bits in SPI packet, or bit 15 of MOSI data = '1'. Packet was discarded. Will also be asserted during a Manchester or SENT communication error.

Bit	Value	Description
9	0	No error detected.
	1	SPI interface error detected.

CRC [8] CRC Error

Incoming SPI CRC error. Packet was discarded.

Bit	Value	Description
8	0	No error detected.
	1	SPI CRC error detected.

NR [7] Not in Run mode

Set if the processor is not actively processing angle data (no angle register updates).

Bit	Value	Description
	0	Processor in Run mode.
7	1	Processor not in Run mode (angle data not being refreshed).

AT [6] Angle Processing Error Flag

Indicates the front end is no longer acquiring angles at the correct rate. This error indicates possible missing magnet conditions, misprogrammed EEPROM, or a combination of extreme rotation speed with low refresh rate settings.

Bit	Value	Description					
6	0	No error detected.					
	1	An angle acquisition time out has occurred.					

AH [5] Angle High Fault Flag

Indicates a target angle greater than the angle set in the MAX_ANGLE field has been detected.

Bit	Value	Description					
5	0	No excessive angle detected.					
	1	Excessive angle detected.					

AL [4] Angle Low Fault Flag

Indicates a target angle smaller than the angle set in the MIN_ANGLE field has been detected.

Bit	Value	Description					
4	0	No excessively small angle detected.					
	1	Excessively small angle detected.					

OV [3] Overvoltage Fault Flag

Indicates a supply overvoltage condition has been detected. During normal EEPROM programming, the high-voltage EEPROM programming pulses trigger this bit.

Bit	Value	Description					
2	0	No VCC overvoltage detected.					
3	1	VCC overvoltage detected.					

UV [2] Undervoltage Fault Flag

Indicates a supply undervoltage has been detected.

	Bit	Value	Description						
	2	0	No VCC undervoltage detected.						
		1	VCC undervoltage detected.						

MH [1] Magnetic Sense High Fault Flag

Indicates detected magnetic field flux density (B) relative to MAG_HIGH.

Bit	Value	Description						
1	0	Magnetic flux density less than MAG_HIGH detected.						
	1	Magnetic flux density greater than MAG_HIGH detected.						

ML [0] Magnetic Sense Low Fault Flag

Indicates detected magnetic field flux density (B) relative to MAG_LOW.

Bit	Value	Description					
0	0	Magnetic flux density greater than MAG_LOW detected.					
	1	Magnetic flux density less than MAG_LOW detected.					

Address: 0x26:0x27 (XERR)

Addr.		0x26										0x	27			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	Re	gister	identi	fier	SS	ES	AW	TR	SU	EU	WC	WT	RC	XE	ME	ST
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Value	1	0	1	1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Reset	1	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0
Extended Error register. Indicate various current error conditions. When set, can only be cleared via the 0x1E register CXE field, power-on reset, or hard reset. Can be masked by 0x36 register.																

[15:12] Register Identifier Code

Used to identify this register.

Bit	Value	Description
15:12	1011	Identifies this register.

SS [11] SRAM Soft Error Flag

Indicates a correctable error in internal SRAM has been detected.

Bit	Value	Description					
11	0	No SRAM soft error detected.					
	1	One or more SRAM soft errors detected.					

ES [10] EEPROM Soft Error Flag

Indicates a correctable error in internal EEPROM has been detected.

Bit	Value	Description				
10	0	No EEPROM soft error detected.				
	1	One or more EEPROM soft errors detected.				

AW [9] Angle Warning

Indicates there is a warning condition present in the Angle Status register. The Angle Status register can be read using extended read command 0xFFFC.

Bit	Value	Description				
0	0	No warnings.				
°	1	One or more warnings have occurred.				

TR [8] Temperature Sensor Error Flag

Indicates a that the temperature sensor has detected a temperature outside of extreme limits $(-50^{\circ}C \text{ to } 175^{\circ}C)$.

Bit	Value	Description				
0	0	No out of bounds temperature detected.				
8	1	Out of bounds temperature detected.				

SU [7] SRAM Hard Error Flag

Indicates an uncorrectable error in internal SRAM has been detected.

Bit	Value	Description						
7	0	No SRAM hard error detected.						
1	1	One or more SRAM hard errors detected.						

EU [6] EEPROM Hard Error Flag

Indicates an uncorrectable error in internal EEPROM has been detected.

Bit	Value	Description						
6	0	No EEPROM hard error detected.						
	1	One or more EEPROM hard errors detected.						

WC [5] Watchdog Processor Halted Fault Flag

Indicates the processor halted.

Bit	Value	Description						
F	0	Processor has not halted.						
5	1	Processor halt detected.						

WT [4] Watchdog Timer Fault Flag

Indicates a processor timeout has occurred (processor may be inactive).

Bit	Value	Description					
4	0	No timeout detected.					
4	1	Timeout detected.					

Continued on the next page ...

Address: 0x26:0x27 (XERR) (continued)

RC [3] Reset Condition Flag

Indicates the A1335 has been reset or powered-up. This includes poweron reset, so RC will always assert on power-up. Obtain ResetStatus value by reading Extended Access address 0xFFFC.

Bit	Value	Description
2	0	No reset has occurred since this bit was last cleared.
3	1	Reset has occurred one or more times since this bit was last cleared.

XE [2] Execution Error Flag

Indicates a requested extended operation has failed to execute correctly. For example, if a signal error is detected during an EEPROM write, this flag would be asserted.

Bit	Value	Description					
2	0	No execution error detected.					
2	1	Execution error detected.					

ME [1] Memory Address Error Flag

Invalid address range on extended address access detected. This includes access to a valid location, such as EEPROM, if the Customer Access Code had not set before attempting a write.

Bit	Value	Description
1	0	No memory address issue detected.
	1	Memory address issue detected.

ST [0] Self-Test Failure Flag

Indicates a Boot-time or other self-test failure has been detected. Obtain STStatus value by reading Extended Access address 0xFFFC.

Bit	Value	Description					
0	0	No self-test failure detected.					
0	1	Self-test failure detected.					

Address: 0x28:0x29 (TSEN)

ſ	Addr.	0x28								0x29							
ſ	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	Name	Register identifier					TEMPERATURE										
ſ	R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
ſ	Value	1	1	1	1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
ſ	Reset	1	1	1	1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
-	Temperature Sensor register. Stores the most recent device temperature reading generated and																

updated automatically by the device processor.

[15:12] Register Identifier Code

Used to identify this register.

Bit	Value	Description
15:12	1111	Identifies this register.

TEMPERATURE [11:0] Device Internal Temperature

The device internal temperature is monitored by the device internal processor and the updated value is written to this register on a periodic basis. The encoded value in this field, n, is converted as $n \times 1/_8$ = Kelvin. Example: 1010 1010 1011 (0xAAB) represents 2731/8 decimal, or 341.375 K (approximately 68.23°C).

Bit	Value	Description
11:0	0/1	Encoded Kelvin temperature.

Address: 0x2A:0x2B (FIELD)

Addr.				0x	2A							0x	2B			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	Name Register identifier			fier		Magnetic Field Strength R										
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Value	1	1	1	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Reset	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Magnetio automati	Magnetic field storage. Stores the most recent magnetic field reading generated and updated automatically by the device processor in gauss.															

[15:12] Register Identifier Code

Used to identify this register.

Bit	Value	Description
15:12	1110	Identifies this register.

Magnetic Field Strength [11:0]

The absolute magnitude of the magnetic field is calculated by the device on a periodic basis. The value is stored in gauss. Thus 0001 0010 1100 (0x12C) represents 300 G.

Bit	Value	Description
11:0	0/1	Magnetic field data in gauss.

Address: 0x34:0x35 (ERM)

Addr.				0	< 34							0x	35			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	Re	gister	identi	fier	0	XOV	IER	CRC	NR	AT	AH	AL	OV	UV	MH	ML
R/W	R	R	R	R	R	R/W										
Value	1	1	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Reset	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Error Register Mask register. Fields used to mask corresponding bitfields (bitfield numbers match) in the 0x24 register from asserting the main Error flag. Set individual fields to 1 to prevent (mask) the corresponding 0x24 register field from affecting the global Error flags (EF in the 0x30 register and 0x24 in the 0x22 register). Values loaded from EEPROM, EMSK field at power-up or hard reset (HDR field). Bits 15:12 are used to identify the register and are fixed at 1100.

Address: 0x36:0x37 (XERM)

Addr.				0x	36							0x	37	7			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	Re	gister	identi	fier	SS	ES	AW	TR	SU	EU	WC	WT	RC	XE	ME	ST	
R/W	R	R	R	R	R/W												
Value	1	1	0	1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	
Reset	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	

Extended Error Register Mask register. Fields used to mask corresponding bitfields (bitfield numbers match) in the 0x26 register from asserting the 0x26 Error flag. Set individual fields to 1 to prevent (mask) the corresponding 0x26 register field from affecting the global Error flags (EF in the 0x30 register, and 0x24 in the 0x22 register) by ORing with the XER field in the 0x24 register. Values loaded from EEPROM, EMSK field at power-up or hard reset (HDR field). Bits 15:12 are used to identify the register and are fixed at 1101.

I²C Interface Description

I²C is a serial interface that uses two bus lines, SCL and SDA, to access the internal device registers. Data is exchanged between a Master controller (for example, a microcontroller) and the A1335, the Slave. The Master can directly read and write the Primary Serial Interface registers (see Table 2). These registers are accessible without involving the A1335 processor, so are accessible with no additional latency. Extended addressing also is available, giving access to data through processor controlled code.

The clock input to SCL is generated by the Master, while the SDA line functions as either an input or an open drain output, depending on the direction of the data transfer. I²C timing is summarized in Figure 2.

I²C communication is composed of several steps in the following sequence:

- 1. Start Condition. Defined by a negative edge on the SDA line, while SCL is high.
- 2. Address Cycle. 7 device (Slave) Address bits, plus 1 bit to indicate write (0) or read (1), followed by an Acknowledge bit.
- 3. Data Cycles. Reading or writing 8 data bits, followed by an Acknowledge bit. This cycle can be repeated for multiple bytes of data transfer. The first data byte on a write could be the register address. See the following sections for further information.
- 4. Stop Condition. Defined by a positive edge on the SDA line, while SCL is high.

Except to indicate a Start or Stop condition, SDA must be stable while SCL is high. SDA can only be changed while SCL is low for data bits.

It is possible for the Start or Stop condition to occur at any time

during a data transfer. The A1335 always responds by resetting the data transfer sequence.

The state of the Read/Write bit is set low to indicate a Write cycle and set high to indicate a Read cycle.

The Master monitors for an Acknowledge bit to determine if the Slave device is responding to the address byte sent to the A1335. When the A1335 decodes the 7-bit address field as a valid address, it responds by pulling SDA low during the ninth clock cycle.

During a data write from the Master, the A1335 pulls SDA low during the clock cycle that follows the data byte, in order to indicate that the data has been successfully received.

After sending either an address byte or a data byte, the Master device must release the SDA line before the ninth clock cycle, in order to allow the handshaking to occur.

The default slave address for the A1335 is 00011xx, where the two LSB bits are set by the package pins (SA1 and SA0) being tied high or low. This selects one of four unique hardware addresses, as follows:

Default I ² C Slave Addresses									
Pin Cor	Address								
SA1 [A1]	SA1 [A1] SA0[A0]								
BYP	BYP	00011 11							
BYP	GND	00011 10							
GND	BYP	00011 01							
GND	GND	00011 00							

Refer to the INTF field (0x319) in the EEPROM Description and Programming section for alternative, programmatic settings.

The I²C is a byte-oriented protocol. The communication inter

Figure 2: I²C input and output timing

face maintains an internal Interface Register Pointer (IRP). This is always set by the first byte on an I²C write and then is indexed to each consecutive byte thereafter for every subsequent byte written or read. The Primary Serial Interface registers memory locations are automatically read or written based on this IRP.

The following tokens are used as an I^2C protocol glossary. Individual tokens may be composed of terms sent from both the Master (the application microcontroller) and the Slave (A1335), so bold typeface indicates terms sent by the Slave to the Master, and plain typeface indicates terms sent from the Master to the Slave.

• [S]: Start condition – bus becomes busy (Master addresses a Slave device)

• [RS]: Restart condition – same as [S], but within a transaction

• [P]: Stop condition – bus becomes free (no Slave addressed)

• [SLVA+R/W+[**n**]**acK**]: 7-bit Slave device address, Read/Write mode bit, Acknowledge bit from Slave

• [IRP+ [n]acK]: 7-bit Register address, Acknowledge bit from Slave

• [D+ [n]acK]: 8-bit read data from slave, Acknowledge bit from Master

Notes:

• The Acknowledge bit can be either acK (0) or nacK (1).

• A *condition* is when the SDA line transitions high or low while the clock (SCL) is high. This is used to signal the beginning/end of I^2C transactions on the bus.

Writing to Base Addresses with I²C

The I²C Master controls the A1335 by programming it as a slave. To do so, the Master transmits data bits to the SDA input of the A1335, in synchronization with the clocking signal it transmits simultaneously on the SCL input. The data stream of writing data to an individual register is shown in Figure 4.

The general I²C protocol to write a Primary Serial Interface register is as follows:

[S][SLVA+W+acK][IRP+acK][D+acK]

A complete transmission begins with the Master pulling SDA low (Start bit) with SCL high, and completes with the Master releasing the SDA line (Stop bit) with SCL high. Between these points, the Master transmits a bit pattern consisting of: Slave device (A1335) address bits, a Write command bit (0), the target register address (within that Slave device), and finally the data for the register.

After each byte, the slave A1335 acknowledges by transmitting a low to the Master on the SDA line. After writing data to a register, if writing is completed the Master must issue a Stop or restart condition. If a Stop or restart condition is not sent, then the next byte will be written to the current register address + 1 (IRP+1). Writing will continue in this fashion until the Stop or restart condition is received.

Figure 3: I²C Base Address Write and Read Sessions Examples. High-voltage pulses are required on VCC only to invoke an EEPROM write.

Figure 4: I²C Base Address Write: value 0x0235 to register address 0x34 (ERM) in slave device 0x3. All steps must occur immediately after the first step, with no intervening transmissions.

A1335

Reading from Base Addresses using I²C

When the Master performs a data read from an A1335 internal register, a combined data transmission format is used. The I^2C Master provides the Start bit, the A1335 device (slave) address, the read/write bit set to Write (0), and then the initial source register address. The Master initially does a write to set the IRP.

The Master then issues another Start bit (referred to as Restart) followed by the same slave address and the read/write bit set to Read (1). The A1335 then provides data read-out, one byte at a time. The data stream of reading data from an individual register is shown in Figure 5.

The general I²C protocol to read a Primary Serial Interface register is as follows:

- 1. [S][SLVA+W+acK][IRP+acK]
- 2. [RS][SLVA+R+acK][DATA@IRP+acK] [(DATA@IRP+1)+nacK][P]

After each byte except for the last, the Master acknowledges by transmitting a low to the slave A1335 on the SDA line. If reading is completed, then the Master must issue a nacK, and then either

a stop or a restart. As long as the Master continues to acK each reading, the IRP will be advanced, and the A1335 will continue to

Precision Hall-Effect Angle Sensor IC

with I²C, SPI, and SENT Interface

I²C Data Redundancy Mode

transmit the contents of the subsequent registers.

A data redundancy mode can be set via the EEPROM register INTF (0x319) DR bit (bit 11). In this mode, on I²C reads, every other byte is the 1's Complement of the previous byte. For instance, when reading the ANG register:

- 1. [S][SLVA+W+acK][0x20+acK]
- 2. [RS][SLVA+R+acK][ANG[15:8]+K][~ANG[15:8]+K] [ANG[7:0]+K][~ANG[7:0]+nacK] [P]
- If the ERD register (addresses 0x0E:0x11) were read: 1. [S][SLVA+W+**acK**][0x04+**acK**]
- 2. [RS][SLVA+R+acK][EDAT[31:24]+acK] [~EDAT[31:24]+acK][EDAT[23:16]+acK] [~EDAT[23:16]+acK][EDAT[15:8]+K][~EDAT[15:8]+acK] [EDAT[7:0]+acK][~EDAT[7:0]+nacK][P]

The complement pattern is restarted at the beginning of any I²C transaction (after a Start or Restart), so the first byte read is always the "real" data and the next byte the complemented data.

Figure 5: I²C Base Address Read: angle value and error status from register address 0x20 (ANG) in slave device 0x3. All steps must occur immediately after the first step, with no intervening transmissions.

SPI Interface

The A1335 provides a full-duplex 4-pin SPI interface for each die using SPI mode 3. The sensor responds to commands received on the corresponding MOSI (Master-Out Slave-In), SCLK (Serial Clock), and CS (Chip Select) pins, and outputs data on the MISO (Master-In Slave-Out) pin. The SPI pins double as I²C data, clock, and address lines. A separate ISEL (Interface Select) pin is used to select between the two communication protocols. SPI is selected when ISEL is brought to a logic high. This is easily accomplished by tying the ISEL pin directly to the BYP pin of the A1335, which provides a constant ≈ 2.8 V.

SPI Interface Timing

The SPI interface operates in pure Slave mode, with the Master controlling the SCLK, MOSI, and CS lines. The Master can maximize data throughput, up to $f_{SCLK}(max)$ of 10 MHz. Figure 6 shows the timings of the Write and Read cycles.

Characteristic	Symbol	Test Conditions	Min.	Typ. ^[1]	Max.	Unit ^[2]
SPI Interface Specifications [3]						
Digital Input High Voltage ^[4]	V _{IH}	MOSI, SCLK, CS pins	2.8	-	3.63	V
Digital Input Low Voltage [4]	V _{IL}	MOSI, SCLK, CS pins	-	_	0.5	V
SPI Output High Voltage	V _{OH}	MISO pins, T _A = 25°C	2.93	3.3	3.69	V
SPI Output Low Voltage	V _{OL}	MISO pins	_	0.3	-	V
SPI Clock Frequency ^[4]	f _{SCLK}	MISO pins, C _L = 50 pF	0.1	_	10	MHz
SPI Clock Duty Cycle	D _{fSCLK}		40	_	60	%
Chip Select to First SCLK Edge [4]	t _{CS}	Time from \overline{CS} going low to SCLK falling edge	50	_	-	ns
Chip Select Idle Time ^[4]	t _{CS_IDLE}	Time $\overline{\text{CS}}$ must be high between SPI message frames	200	_	-	ns
Data Output Valid Time ^[4]	t _{DAV}	Data output valid after SCLK falling edge	-	45	-	ns
MOSI Setup Time ^[4]	t _{SU}	Input setup time before SCLK rising edge	10	_	-	ns
MOSI Hold Time [4]	t _{HD}	Input hold time after SCLK rising edge	50	_	-	ns
SCLK to CS Hold Time [4]	t _{CHD}	Hold SCLK high time before $\overline{\text{CS}}$ rising edge	5	_	_	ns
Load Capacitance [4]	CL	Loading on digital output (MISO) pin	_	_	50	pF

^[1] Typical data is at $T_A = 25^{\circ}$ C and $V_{CC} = 5$ V and it is for design information only.

 $^{[2]}$ 1 G (gauss) = 0.1 mT (millitesla).

^[3] During the power-on phase, the A1335 SPI transactions are not guaranteed.

^[4] Parameters for this characteristic are determined by design. They are not measured at final test.

SPI Message Frame Size

A SPI transaction is a minimum of 16 bits in length. An extended 20-bit SPI packet allows 4 bits of CRC to accompany every data packet. The 4-bit CRC is automatically generated and placed on the MISO line once a 17th SCLK edge is detected by the A1335. The incoming CRC on the MOSI line is ignored unless the SC bit is set within EEPROM (0x319 bit 20). When enabled, a SPI packet with an incorrect CRC will be discarded, and the CRC error flag set (bit 8 within Serial register 0x24:0x25).

Figure 8: Twenty Bit SPI Transaction

Write Cycle Overview

Write cycles consist of a 1-bit sync (low), a 1-bit \overline{R}/W asserted high, 6 address bits (corresponding to the primary serial register), 8 data bits, and 4 optional CRC bits. To write a full 16 bit serial register, two Write commands are required (even and odd byte addresses). MOSI bits are clocked in on the rising edge of the Master-generated SCLK signal. The complete <u>SPI</u> packet is latched on the rising edge of the Master-generated (\overline{CS}) signal.

The simultaneous MISO signal output represents the contents of the corresponding die SPI read packet. Including 16 data bits and 4 optional CRC bits, automatically included if a 17th SCLK edge is detected. The data bits correspond to the register contents selected during the previous read command. In the case where no previous read command was issued, the MISO line will transmit all zeros.

Read Cycle Overview

Read cycles have two stages: a Read command, selecting a serial register address, followed by another Read command to transmit the data from the selected register. Both commands consist of a 1-bit sync (low), a 1-bit \overline{R} /W asserted low, 6 address bits identifying the target register, and 8 data bits (all zeros because no data is being written).

In the first stage, as with the Write command, Read command

Precision Hall-Effect Angle Sensor IC with I²C, SPI, and SENT Interface

MOSI bits are clocked-in on the rising edge of the Master generated SCLK signal, and data latched on the rising edge of the (\overline{CS}) signal. During the first Read stage, the simultaneous MISO signal output is the contents of the SPI read data from the previous Read command cycle.

In the second stage, the Read command continues on the next falling edge of the Master-generated (\overline{CS}) signal. The MISO bits are the contents of the register selected during the first stage, read 16 bits at a time. The MISO bits transmit on the falling edges of the SCLK signal, such that the Master can sample them on the SCLK rising edges.

Because a SPI Read command can transmit 16 data bits at one time, and the primary serial registers are built from one even and one odd byte, the entire 16-bit contents of one serial register may be transmitted with one SPI frame (See Table 3 for Serial Register format). This is accomplished by providing an even serial address value. If an odd value address is sent, only the contents of the single byte will be returned, with the eight most significant bits within the SPI packet set to zero.

Example: To read all 16 bits of the Error register (0x24:0x25), a SPI read request using address 0x24 should be sent. If only the 8 LSBs are desired, the address 0x25 should be used.

Figure 9 shows examples of both a SPI write and a SPI read request, using a 16-bit SPI message frame.

MANCHESTER SERIAL INTERFACE

To facilitate addressable device programming when using the unidirectional SENT output mode with no need for additional wiring, the A1335 incorporates a serial interface on the VCC line. (Note: The A1335 may be programmed via the SPI or I²C interfaces, with additional wiring connections). This interface allows an external controller to read and write registers in the A1335 EEPROM and volatile memory. The device uses a point-to-point communication protocol, based on Manchester encoding per G.E. Thomas (a rising edge indicates a 0 and a falling edge indicates a 1), with address and data transmitted MSB first. The addressable Manchester code implementation uses the logic states of the SA0/ SA1 pins to set address values for each die. In this way, individual communication with up to four A1335 die is possible.

To prevent any undesired programming of the A1335, the serial interface can be disabled by setting the Disable Manchester bit (0x30B bit 23) to a 1. With this bit set, the A1335 will ignore any Manchester input on VCC.

Entering Manchester Communication Mode

Provided the Disable Manchester bit is not set in EEPROM, the A1335 continuously monitors the VCC line for valid Manchester commands. The part takes no action until a valid Manchester Access Code is received.

There are two special Manchester code commands used to activate or deactivate the serial interface and specify the output format used during Read operations:

- 1. Manchester Access Code: Enters Manchester Communication Mode; Manchester code output on the SENT pin.
- 2. Manchester Exit Code; returns the SENT pin to normal (angle data) output format.

Once the Manchester Communication Mode is entered, the SENT output pin will cease providing angle data, interrupting any data transmission in progress.

Transaction Types

As shown in Figure 10, the A1335 receives all commands via the VCC pin, and responds to Read commands via the SENT pin. This implementation of Manchester encoding requires the communication pulses be within a high ($V_{MAN(H)}$) and low ($V_{MAN(L)}$) range of voltages on the VCC line. Writing to EEPROM is supported by two high voltage pulses on the VCC line.

Each transaction is initiated by a command from the controller; the A1335 does not initiate any transactions. Two commands are recognized by the A1335: Write and Read.

Table 4: EEPROM Value for Serial Communication

Address	Bits	Parameter Name	Description
0x30B	23	Disable Manchester (DM)	When set (logic 1) the A1335 ignores any Manchester input on the VCC line

Reading Data Using Manchester Encoding

A Read command with the desired register number is sent from the controller to the A1335. The device responds with a Read Response frame using the Manchester protocol.

In addition to the contents of the requested memory location, a Return Status field is included with every Read Response. This field provides the ID used to communicate with the part and any errors which may have occurred during the transaction. These bits are:

- ID ID (SA1/SA) unless BC = 1 (ID will be 00)
- BC Broadcast; ID field was zero or SPI mode active
- AE Abort Error; edge detection failure after sync detect
- **OR** Overrun Error; A new Manchester command has been received before the previous request could be completed
- CS Checksum error; a prior command had a checksum error

Table 5: Return Status Bits

Figure 11: Manchester Read Response

Error Checking

The serial Manchester interface uses a cyclic redundancy check (CRC) for data-bit error checking (synchronization bits are ignored during the check).

The CRC algorithm is based on the polynomial

$$g(x) = x^3 + x + 1$$
,

and the calculation is represented graphically in Figure 4.

The trailing 3 bits of a message frame comprise the CRC token. The CRC is initialized at 111.

Figure 12: Manchester CRC Calculation

Manchester Message Structure

The general format of a command message frame is shown in Figure 13. Note that, in the Manchester coding used, a bit value of 1 is indicated by a falling edge within the bit boundary, and a bit value of zero is indicated by a rising edge within the bit boundary.

Figure 13: General Format for Serial Interface Commands

A brief description of each bit is provided in Table 6.

Table 6: Manchester Command General Format

Bits	Parameter Name	Values	Description
2	Synchronization	00	Used to identify the beginning of a serial interface command
1	Deed/M/rite	0	[As required] Write operation
1	Read/write	1	[As required] Read operation
4	Chip Select	0/1	Used to select a set of target chips/die, based on ID value.
6	Address	0/1	[Read/Write] Serial address
16	Data	0/1	Requested serial register contents (Write operation only)
3	CRC	0/1	Incorrect value indicates errors

When the A1335 is operating in I^2C Mode (ISEL pin set to a logic low), the Die ID value is determined by the state of the SA0 and SA1 pins.

Table 7: Pin Values

SA1	SA0	ID Value
0	0	ID0
0	1	ID1
1	0	ID2
1	1	ID3

Using the 4 bits of the Chip Select field, die can be selected via their ID value, allowing up to four die to be individually addressed and providing for different group addressing schemes. If Chip Select is all zeros or the A1335 is operating in SPI mode (ISEL pin set to a logic high), no ID comparison will be made, allowing all A1335s to be addressed at once.

Example: If Chip Select = 1010, all die with ID3 or ID1 will be selected.

Note: If the sharing a SENT line with multiple chips/dies, reading must be done one die at a time.

Table 8: Chip Select

Chip Select									
ID3	ID2	ID1	ID0						

Manchester Interface Reference

Table 9: Manchester Interface Protocol Characteristics¹

Characteristics	Symbol	Note	Min.	Тур.	Max.	Unit
Input/Output Signal Timing						
Bit Rate		Defined by the input message bit rate sent from the external controller	4	-	100	kbps
Pit Time	+	Data bit pulse width at 4 kbps	243	250	257	μs
	BIT	Data bit pulse width at 100 kbps	9.5	10	10.5	μs
Bit Time Error	err _{TBIT}	Deviation in t _{BIT} during one command frame	-11	_	+11	%
Write Delay	t _{WRITE(E)}	Required delay from the end of the second EEPROM Program pulse to the leading edge of a following command frame	V _{CC} < 6.0 V	-	-	-
Read Delay	t _{START_READ}	Delay from the trailing edge of a Read command frame to the leading edge of the Read Acknowledge frame	1⁄4 × t _{bit}	_	¾ × t _{bit}	μs
EEPROM Programming Pulse						
EEPROM Programming Pulse Setup Time	t _{sPULSE(E)}	Delay from last bit cell of write command to start of EEPROM programming pulse	40	_	_	μs
Input Signal Voltage						
Manchester Code High Voltage	V _{MAN(H)}	Applied to VCC line	7.8	_	_	V
Manchester Code Low Voltage	V _{MAN(L)}	Applied to VCC line	-	-	5.7	V
Output Signal Voltage (Applied on S	ENT Line)					
Manchaster Code High Voltage	V	Minimum $R_{pullup} = 5 k\Omega$	$0.9 \times V_S$	-	-	V
	V MAN(H)	Maximum R _{pullup} = 50 k Ω	$0.7 \times V_S$	_	-	V
Manchester Code Low Voltage	V _{MAN(L)}	$5 \text{ k}\Omega \leq \text{R}_{\text{pullup}} \leq 50 \text{ k}\Omega$	_	_	0.1	V

¹ Determined by design.

The following command messages can be exchanged between the device and the external controller:

- Manchester Access Code
- Manchester Exit Code
- Read
- Read Response
- Write

For EEPROM address information, refer to the EEPROM Structure section. For serial address locations, refer to the serial register map.

Table 10: Manchester Access Code

Function	Transmits the Access Code to the A1335. Enters Serial Communication mode with the desired output protocol.				
Syntax	Sent by the external controller on the A1335 VCC pin.				
Related Commands	Related command: Serial Exit Code				
Pulse Sequence	Synchronize Chip Select Access Code (16 bits) CRC 0 0 0/1 0/1 0/1 1 1 1 1 0/1 0/1 0/1 0/1 0/1 1 1 1 1 0/1				
Options	Access Codes: Manchester Access Code = 0x62D2 Selects Manchester output on the SENT pin.				
Examples	The Manchester Access Code operates as a broadcast pulse, meaning the Chip Select field is inconsequential. For example, if two A1335s configured with ID0 and ID1 respectively are sharing a common V _{CC} line, a Manchester Access Code with a Chip Select Value of 0x1 results in both sensors entering Manchester Serial Communication mode.				

Table 11: Manchester Exit Code

Function	Returns the A1335 to normal operation.		
Syntax	Sent by the external controller on the A1335 VCC pin. Manchester Exit Code = Any value other than 0x62d2		
Related Commands	Manchester Access Codes		
Pulse Sequence	Synchronize Chip Select Exit Code (16 bits) CRC 0 0 0/1 0/1 1 1 1 1/1 0/1		
Options	None		
Examples	Similiar to the Manchester Access code, acts as a broadcast pulse. To exit the serial communication mode, the Exit Code can be any value besides the Access Code (such as 0x0000).		

Table 12: Manchester Read

Function	Determines the serial address within the A1335, from which the next Read Response will transmit data. The A1335 must first receive a Manchester Access Code before responding to a read command.				
Syntax	Sent by the external controller on the A1335 VCC pin.				
Related Commands	Read Response				
Pulse Sequence	Read/Write Serial Register CRC Synchronize Chip Select Serial Register CRC 0 0 1 0/1				
Options	None				
Examples					

Table 13: Manchester Read Response

Function	Transmits to the external controller data retrieved from the A1335 serial register in response to the most recent Read command.		
Syntax	Sent by the A1335 on the SENT pin. Sent after a Read command.		
Related Commands	Read		
Pulse Sequence	Bits CRC 0 0 0/1		
Options	Read from an Even address returns Even byte [15:8] and Odd byte [7:0]. Read from an Odd address returns Odd byte [7:0] only. Data bits [15:8] will be zeroes.		
Examples	-		

Table 14: Manchester Write

Function	Transmits to the A1335 data prepared by the external controller.				
Syntax	Sent by the external controller on the A1335 VCC pin.				
Related Commands					
Pulse Sequence	Read/Write Serial Register Data (16 bits) CRC 0 0 0/1<				
Options	Data is written to Address and Address+1 if Even address (16-bit write). If Odd address, only 8 bits are written (LSB of 16-bit data field).				
Examples					

Extended Access Protocol

The previous sections dealt with reading and writing to the primary serial registers. The different communcation interfaces can be used to communicate to the internal processor via an extended addressing protocol. This extended access is used to read and write values to and from the EEPROM and SRAM, as well as to access additional information and diagnostic procedures not directly available through the primary serial interface registers. See section Extended Access Command Set and Table 15 for the available extended addresses and their purposes.

The process for interfacing to the extended addressing range requires the Master to perform the task of writing the targeted extended address to the ERA or EWA registers in the base address range, and either reading or writing values to the ERD or EWD registers (also in the base address range), depending on whether it is a read or a write operation. The procedures for reading and writing to extended addresses have three steps, shown in the following examples.

Writing to Extended Addresses

Writing steps are: addressing, loading data, and execution. The A1335 must be in Idle mode to read/write to the EEPROM, and configure certain addresses. See Table 1 for a summary. The following procedure is an example of loading a value into volatile (serial interface base) memory and then writing it to EEPROM.

In this example, the hex value 0x123083 will be written to EEPROM location 0x317. This will store the most significant 12 bits (0x123) in the customer scratchpad area. The lower 12 bits enable Triggered SENT and set a Tick time of 0.5 microseconds.

The following examples assume I²C operation, however the general steps are the same when using SPI or Manchester protocol, with all register addresses and data contents remaining unchanged. It is assumed that the A1335 has been configured with slave address of 0x03 and has been unlocked for EEPROM writing as outline in the EEPROM programming section. 1. Load the EWA register (address 0x02:0x03, see Table 2) with the target extended address, 0x0317 (see EWA in Table 2). To do so, perform the following steps:

a. Write value 0x03 (MSBs of extended address) to EWA address 0x02.

b. Write value 0x17 (LSBs of extended address) to EWA address 0x03.

- 2. Load 0x123083 into the EWD registers (32 bits, in four 8-bit registers, addresses 0x04 to 0x07, see Table 2):
 - a. Write value 0x00 to register address 0x04.
 - b. Write value 0x12 to register address 0x05.
 - c. Write value 0x30 to register address 0x06.
 - d. Write value 0x83 to register address 0x07.
- 3. Initiate extended address Write by setting the EWCS register EXW bit to 1. To do so, write value 0x80 to the EWCS register address, 0x08 (see Table 2).
- 4. In order to actually program the values into EEPROM, programming pulses are required at this point, as described in the EEPROM Programming section.
- 5. (Recommended) Read the EWCS register Write Done (WDN) field. To do so, read the EWCS register address, 0x09 (see Table 2). Repeat this step until EWCS indicates the read is done.

The I²C protocol steps for performing the extended write are shown below. Figure 14 represents this graphically.

- 1. [S][SLVA+W+**acK**][0x02+**acK**][0x03+**acK**][0x17+**acK**] (setting the extended address)
- 2. [0x00+acK][0x12+acK][0x30+acK][0x83+acK] (load data)
- 3. [0x80+acK][P] (executing the extended Write command)
- 4. [SLVA+R+**acK**][0xEWCS + **nacK**][P] (verifying the extended Write command)

Figure 14: I²C Extended Address Write and Read Sessions Examples

Figure 15: I²C Extended Address Write Example

Reading from Extended Addresses

Reading steps are: addressing, execution, and read-out. The following procedure is an example of loading a value from EEPROM into volatile (serial interface base) memory from which it can be accessed by the Master.

In this example, read the contents of EEPROM location 0x0317. This procedure is presented graphically in Figure 16.

1. Load the ERA register (address 0x0A:0x0B, see Table 2) with the target extended address 0x0317 (see ERA in Table 2). To do so:

a. Write value 0x03 (MSBs of extended address) to ERA address 0x0A.

b. Write value 0x17 (LSBs of extended address) to ERA address 0x0B.

2. Set extended access Read mode by setting the ERCS register EXR bit to 1. To do so, write value 0x80 to the ERCS register address, 0x0C (see Table 2).

- 3. Read the ERCS register Read Done (RDN) field. To do so, read the ERCS register address, 0x0D (see Table 2).
- 4. Read the ERD registers (32 bits, in four 8-bit registers, addresses 0x0E to 0x11, see Table 2), 16 bits at a time, 0x0E through 0x11.

The I²C protocol steps for performing the extended read are shown below. For simplicity it is assumed that the A1335 has been configured with a slave address of 0x03. Figure 16 represents this graphically.

- 1. [S][SLVA+W+**acK**][0x0A+**acK**][0x03+**acK**][0x17+**acK**] (setting the extended address)
- 2. [0x80+acK] (executing the extended Read command)
- 3. [RS][SLVA+R+acK][ERCS[7:0]+ack] (verifying the extended Read command)
- 4. [ERD[31:24]+acK][ERD[23:16]+acK][ERD[15:8]+acK] [ERD[7:0]+nacK][P] (A1335 streaming ERD registers)

Address* (Hex)	Name	Usage			
02:03	EWA	Extended Write Address			
04:07	EWD	Extended Write Data			
08:09	EWCS	Extended Write Control and Status			
0A:0B	ERA	Extended Read Address			
0C:0D	ERCS	Extended Read Control and Status			
0E:11	ERD	Extended Read Data			
1E:1F	CTRL	Device control			
20:21	ANG	Current angle and related data			
22:23	STA	Device status			
24:25	ERR	Device error status			
26:27	XERR	Extended error status			
28:29	TSEN	Temperature sensor data			
2A:2B	FIELD	Magnetic field strength			
34:35	ERM	Device error status masking			
36:37	XERM	Extended error status masking			

Table 2: Primary Serial Interface Registers (Reserved Registers Not Shown) (reproduced from page 3 for easy reference)

*Addresses that span multiple bytes are addressed by the most significant byte (lower address in the address range corresponds to the most significant byte).

A1335

Precision Hall-Effect Angle Sensor IC with I²C, SPI, and SENT Interface

Extended Access Command Set

Extended access commands are initiated using the extended access reads and writes described earlier. These commands can be thought of as additional address ranges that are passed to the internal processor, which then interprets and acts accordingly. Some addresses are mapped to internal data structures, such as the SRAM or EEPROM, and some addresses are interpreted by the processor as commands to perform more complex operations, such as diagnostic self-tests.

The address that defines the extended access is loaded into the primary serial interface 16-bit ERA or EWA register, depending on whether the operation to be performed is designated as a Read or Write. If a Write, then the data to be written is loaded into the 32-bit EWD register. The extended access operation is then initiated by setting the appropriate ERCS[EXR] or EWCS[EXW] bit, and polling for the ERCS[ERD] or EWCS[EWD] bit. The latter polling is generally necessary because the processor only accepts a new extended command when it is not actively processing an angle reading. As a result, there can be a delay from the time the command is initiated to the time the processor begins acting on the command, and then further time is required for the execution of the command itself.

The longest time for a command to be recognized by the processor is less than 128 μ s, and depends on the number of angle post-processing steps that are selected in the AlgEnb field. Execution

time of the command varies from 2 to 3 μ s for SRAM Reads and Writes to almost 40 ms for some of the self-test diagnostics. Unless otherwise stated for a particular access, the command execution time is less than 4 μ s. Waiting for completion longer than the worst case time is possible, but for maximum flexibility polling for the Done bit is recommended.

Do not initiate a new extended access command until a prior one has completed. If the processor has not completed the previous command, it is possible that the previous command will either be nullified or corrupted and the actual results indeterminate.

Some extended access commands are protected, or locked (as detailed in their descriptions), when the A1335 is powered-up or reset. This is generally to prevent accidental access to commands that may either change the behavior of the A1335, or interrupt angle processing. To use such locked commands, an access code must be entered by writing the extended access command address 0xFFFE with the unlock code 0x27811F77. Note that after being unlocked, the part stays unlocked until reset or powered-off.

A few extended access commands require the A1335 first be placed in Idle mode. This is required because executing such commands would interfere with angle processing, and the processor would no longer be able to deliver up-to-date angle data to the primary serial interface ANG register. Idle mode is entered using the primary serial interface CTRL register.

Extended Address	Read or Write	Access	During Run Mode	Keycode Required	Purpose
0x0000 to 0x003F	Read	Yes	Yes	No	Read an SRAM location. See SRAM register reference section for details.
0x0000 to 0x001A	Write	Yes unless LM = 1	Yes	Yes	Write to an SRAM location. See SRAM register reference section for details.
0x0300 to 0x031F	Read	Yes	Yes	No	Read an EEPROM location. See EEPROM register reference section for details.
0x0306 to 0x0319	Write	Yes unless LE = 1 or after soft/ watchdog reset	No	Yes	Write to an EEPROM location. See EEPROM register reference section for details.
0x0606 to 0x061F	Read	Yes	No	No	Reads EEPROM address through the microprocessor with 0 V margining.
0x0706 to 0x071F	Read	Yes	No	No	Reads EEPROM address through the microprocessor with 4 V margining.
0xFFC0	Write	Yes unless LM = 1	No	Yes	Run Long SRAM BIST. Write this address from the EWA register to execute the test. The ST error bit (bit 0 of the XERR register) will be set if the BIST fails. This is a diagnostic procedure that runs a bit-level BIST (built-in self test) procedure on the SRAM. Execution takes about 4 ms. Note: The SRAM will be reloaded from EEPROM on completion, so any reconfiguration of SRAM configuration will be overwritten.
0xFFC1	Write	Yes unless LM = 1	No	Yes	Run Short SRAM BIST. Write this address from the EWA register to execute the test. The ST error bit (bit 0 of the XERR register) will be set if the BIST fails. This is a diagnostic procedure that runs a word-level BIST (built-in self test) procedure on the SRAM. Execution takes about 100 µs. Note: The SRAM will be reloaded from EEPROM on completion, so any reconfiguration of SRAM configuration will be overwritten.
0xFFC2	Write	Yes unless LM = 1	No	Yes	Run Long SRAM BIST with Halt-on-Error. Write this address from the EWA register to execute the test. Same as 0xFFC0, except the BIST will halt at any mismatch condition, allowing internal state information to be read to determine which location failed.
0xFFC3	Write	Yes unless LM = 1	No	Yes	Run Short SRAM BIST with Halt-on-Error. Write this address from the EWA register to execute the test. Same as 0xFFC1, except the BIST will halt at any mismatch condition, allowing internal state information to be read to determine which location failed.

Table 15: Extended Access Commands to Processor

Continued on the next page...

Extended Address	Read or Write	Access	During Run Mode	Keycode Required	Purpose
	Read	Yes	Yes	No	Read Output Rate. Write this address to the ERA register to readout the value. The Output Rate configures the averaging of the angle samples. See EEPROM register 0x308 for details.
0xFFD0	Write	Yes unless	No	Yes	Set Output Rate. Write this address to the EWA register to write the value from the EWD register. The Output Rate configures the averaging of the angle samples. See EEPROM register 0x308 for details.
					Note: The A1335 must be placed in Idle mode to change the Output Rate from the EEPROM programmed value.
0xFFE0	Write	Yes	No	Yes	Run ROM Checksum Validation. Write this address to the EWA register to execute the test and store the computed checksum in the SRAM CmdStatus field. Compares the result to the expected value, and if the comparison fails, the ST bit in the XERR primary serial interface register is set to 1. This operation can take a few milliseconds.
0xFFE1	Write	Yes	No	Yes	Run CVH Self-Test. Write this address to the EWA register to execute the test and store the test results for the individual Hall elements in SRAM CmdStatus field (SRAM 0x00), and primary serial interface ERD register (0x0E through 0x11). If any elements fail the test, the ST bit in the XERR primary serial interface register is set to 1. This is a diagnostic operation that checks the response of the angle-sensing Hall elements. Execution of this will take about 36 ms.

Table 15: Extended Access Commands to Processor (continued)

Continued on the next page...

Extended Address	Read or Write	Access	During Run Mode	Keycode Required		Purpose
					Read the v	d Processor Status flags. Write this address to the ERA register to readout alues.
					Bit	
					0	When set to 1, Run mode has been requested (this does not mean that Run mode is active, just that the processor will transition to run as soon as possible). Initially set by the GR bit from EEPROM. Changed via the CDS field in primary serial interface registers.
	Pood	Voc	Voc	No	1	When set to 1, SRAM writes via the extended access interface are disabled. Set via the LM (Lock Processor) bit from EEPROM.
UXFFFO	Reau	Tes	Tes	NO	2	When set to 1, EEPROM writes are disabled. Set via the LE (Lock EEPROM) bit from EEPROM.
					3	When set to 1, a watchdog timer fault or a processor halt will reset the A1335. Set via the FR (Fault Recovery) bit from EEPROM.
					5	When set to 1, the Customer Keycode as been accepted and the A1335 is unlocked.
					7	When set to 1, the A1335 can not exit Run mode unless the Customer Keycode is first used to unlock the A1335. Set via the LI (Lock Idle) bit from EEPROM.
0xFFF9	Read	Yes	Yes	No	Read Write Bits Bits	d 16-bit angle and 16-bit magnetic field strength data. e this address to ERA register to readout data. 31:16 of the ERD register correspond to angle. 15:0 of the ERD register are magnetic field data.
					Read value coun this r and l	d ECC Error Counts. Write this address to the ERA register to readout the es. The fields are cleared upon execution of this command. Data is the total t of EEPROM and SRAM ECC errors since power-up, or from the last time register was read. If an error has occurred, the respective SSE, ESE, SUE, EUE bits in the XERR primary serial interface register are set to 1.
					Bit	
					7:0	EEPROM corrected error count (saturates at 255).
0xFFFA	Read	Yes	Yes	No	15:8	EEPROM uncorrected error count (saturates at 255).
					22:16	SRAM corrected error count. 0 to 127, except see bit 23.
					23	SRAM corrected error count overflow. If set to 1, more than 127 SRAM corrected errors have occurred.
					26:24	SRAM uncorrected error count. 0 to7, except see bit 27.
					27	SRAM uncorrected error count overflow. If set to 1, more than 7 SRAM uncorrected errors have occurred.
0xFFFB	Read	Yes	Yes	No	Read value appro mode	d Alive Counts. Write this address to the ERA register to readout the es. Data is from the 32-bit field that stores the count, which increments oximately once every 8 ms when angle processing is active (that is, in Run e). Clears to 0 when the A1335 is initially powered, and after every reset.

Table 15: Extended Access Commands to Processor (continued)

Continued on the next page ...

Table 15: Extended Access Commands to Processor (continued)

Extended Address	Read or Write	Access	During Run Mode	Keycode Required		Purpose
					Read reado the E: the co these cleare cleare occur XERF	Extended Status Registers. Write this address to the ERA register to out the values. Registers are cleared after reading. The related flags in xtended Error (XERR) register in the primary serial interface are set when presponding conditions listed below are asserted. However, clearing bits does not clear the aggregate bit in the XERR register. Those bits are ed via the CTRL register. It is not necessary to clear this register before ng the XERR bits. This status register records which conditions previously red, but it is only the active re-occurrence of those conditions that set the R flags.
					Bit	
					The A more	W (Angle Warning) error bit in the XERR register is set to 1, when one or of the following error bits is set.
					1	Gain overflow. When set to 1 indicates angle gain range exceeeds full dynamic range. The Scaling configured by the SRAM Gain field must be reduced. Sets the AW (angle warning) error bit within the XERR register.
					2	Angle Slippage. When set to 1, indicates ORATE is set too low to perform all required computations as selected by the algorithm enables (SRAM AlgEnb register). ORATE should be increased if all the algorithmic steps selected are necessary.
					3	Filter Reset. When set to 1, indicates an IIR filter has been reset due to sample out of range. Most likely indicates the SRAM FiltError field is set too low relative to the noise level of the angle reading.
OVEEEC	Read	Ves	Ves	No	4	Bandpass Saturation. When set to 1, indicates the analog frontend is saturated. Generally implies that the field strength is high. However, this does not tend to affect the angle reading, so this condition does not set the AW flag and is present only as an informative status.
UXITI U	rteau	103	103	NO	The S 10, oi	T (Self-Test) error bit in the XERR register is set to 1, if any one of bits 9, r 11 are set.
					9	When set to 1, indicates an SRAM BIST failed. Sets the ST (Self-Test) error bit in XERR register.
					10	When set to 1, indicates ROM checksum is incorrect. Sets the ST (Self-Test) error bit in XERR register.
					11	When set to 1, indicates the CVH Self-Test failed. Sets the ST (Self-Test) error bit in XERR register.
					13	When set to 1, indicates the EEPROM experienced an uncorrectable error.
					16	Processor running, if set to 1. In idle mode when 0.
					17	SPI incoming CRC error detected. Clears on read.
					18	SPI Error. Incorrect bit count in SPI packet or Bit 15 on MOSI = 1. Clears on read.
					19	When set to 1, indicates the SRAM experienced an uncorrectable error.
					20	When set to 1, indicates the SRAM experienced a correctable error. Clears on read.
					21	Undervoltage Fault. V_{CC} below V_{CC} Low Flag Threshold. Clears on read, if condition has cleared.
					22	Overvoltage Fault. V_{CC} above High Voltage Threshold (\approx 8 V). Clears on read, if condition has cleared.
					23	Access Error. Access to serial interface failed due to conflict. Clears on read.

Continued on the next page ...

Extended Address	Read or Write	Access	During Run Mode	Keycode Required		Purpose
					The RC (more of t	(Reset Condition) error bit in XERR register is set to 1, when one or the following error bits is set.
					25 W th	Vhen set to 1, indicates an unidentified reset condition occurred. Sets ne RC (Reset Condition) bit in XERR register.
					26 W R	When set to 1, indicates an unexpected reset vector occurred. Sets the RC (Reset Condition) bit in XERR register.
OVEEEC	Pood	Voc	Voc	No	27 W	When set to 1, indicates a soft reset via the CTRL register occurred. Sets the RC (Reset Condition) bit in XERR register.
UXFFFC	Reau	Tes	Tes	NO	28 W	Vhen set to 1, indicates a processor halt reset occurred. Sets the RC Reset Condition) bit in XERR register.
					29 W	Vhen set to 1, indicates a watchdog timer reset occurred. Sets the RC Reset Condition) bit in XERR register.
					30 W	When set to 1, indicates a hard reset via the CTRL register occurred. Sets the RC (Reset Condition) bit in XERR register.
					31 W	Vhen set to 1, indicates a power-on reset occurred. Sets the RC (Reset condition) bit in XERR register.
0xFFFE	Write	Yes	Yes	No	Write Cus value 0x2 protected	stomer Keycode. Write this address to the ERW register to write the 27811F77 stored in the EWD register to unlock the A1335 for various d capabilities, such as writing to SRAM and EEPROM.
0xFFFD	Read	Yes	Yes	No	Read RO ROM che integrity c	OM Checksum. Write this address to the ERA register to readout the ecksum. It is a 20-bit code stored in ROM and used to check the of the ROM image at boot. ROM Checksum = 0x9FD1F.
0xFFFF	Read	Yes	Yes	No	Read RO ROM vers Version =	DM Version. Write this address to the ERA register to readout the sion. It is a 32-bit code identifying the internal firmware version. ROM = 0x133500BA.

Table 15: Extended Access Commands to Processor (continued)

SRAM Description and Programming

The SRAM (Static Random Access Memory) is the working and volatile storage for the internal processor. At power-up, or following a hard reset, the necessary contents of the non-volatile EEPROM are read and moved into SRAM for quick access by the processor. The processor subsequently operates solely out of the SRAM. Configuration parameters that were moved from EEPROM can be modified in the SRAM through the serial interface, after an unlocking procedure is performed (see section Extended Access Protocol for procedure). This allows the A1335 to be calibrated or tested without having to rewrite the EEPROM and cycle the power. After parameters have been finalized, the EEPROM can be updated and, if required, either the EEPROM or the SRAM, or both, can be protected from subsequent change.

The SRAM registers are addressed as 32-bit words. One word may contain multiple configuration fields. All fields in a word must be read and written together. The SRAM is read and written via the Extended Access Protocol described in section Extended Access Protocol, using extended addresses 0 through 26 (hex 0x1A).

The location and format of configuration parameters in the SRAM differ from those in the EEPROM, so conversion is necessary. Of specific note is that the resolution of values related to angle processing is different in the SRAM versus the EEPROM, with the SRAM maintaining higher resolutions to reduce the error associated with mathematical processing of the angle. The A1335 does all required conversions when loading the SRAM from EEPROM. When updating the EEPROM, however, any format conversions must be done externally to the A1335. The following section details the address, format, and purpose of the accessible SRAM words. The organization of the EEPROM follows in a separate section, and will reference back to the SRAM section for details on parameters.

Dual Purpose Registers

There are eight registers in the SRAM (addresses 0x0C through 0x13) that can be used for alternative purposes: either segmented linearization or harmonic linearization. The format used corresponds to the linearization method chosen. To choose segmented linearization, set the SL bit to 1 (bit 20 in the SRAM register 0x06, AlgEnb field).

Angle Resolution for SRAM

The 16-bit value in this field (in *angle resolution* units) multiplied by (360/65536) equals the angle in degrees. This is the representation of an angle between 0 and 360 degrees ($0 \le angle < 360$) in the SRAM field, where 16 bits are used to represent the angle. This gives a resolution of 360/65536, approximately 0.0055 degrees.

• To convert the field value to degrees: A 16-bit field value of 0110 1110 0001 0000 (0x6E10) equals 28176 decimal. So 28176 × (360/65536) = 154.78 angular degrees (rounded to nearest 1/100).

• To convert degrees to the equivalent field value: An angle value of 317.88 degrees = $317.88 / (360 / 65536) = 317.88 \times (65536 / 360) = 57868.288$, or 57868 (rounded to nearest integer). This converts to a binary field value of 1110 0010 0000 1100 (0xE20C).

Note that because the difference in angle resolution between EEPROM and SRAM is just the addition of 4 bits, there is a simple conversion between the two formats.

• To convert from an EEPROM angle (12-bit) to an SRAM angle (16-bit), just add 4 zeroes to the end of the 12-bit binary field (equivalent to multiplying by 16):

EEPROM 12-Bit Angle	0	1	1	0	1	1	1	0	0	0	0	1				
SRAM 16-Bit Angle	0	1	1	0	1	1	1	0	0	0	0	1	0	0	0	0

• To convert from an SRAM angle (16-bit) to an equivalent EEPROM angle (12-bit), throw away the lowest 4 bits in the SRAM field, and round by incrementing the 12-bit value by 1 if bit 3 of the 16-bit number is 1:

SRAM 16-Bit Angle	0	1	1	0	1	1	1	0	0	0	1	1	1	1	0	0
EEPROM 12-Bit Angle	0	1	1	0	1	1	1	0	0	0	1	1	_	_	_	_
(Rounded)	0	1	1	0	1	1	1	0	0	1	0	0	()	Ad	d 1)

A1335

Precision Hall-Effect Angle Sensor IC with I²C, SPI, and SENT Interface

L0 M3 M2 L1 EADR State Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x00 CmdStatus _ MaxAngle 0x01 _ MinAngle ClampLo 0x02 ClampHi _ 0x03 _ GainOffset Gain 0x04 _ BadTsen BadAngle 0x05 MiscStatus BadMagSense _ AlgEnb 0x06 ZeroOffset _ RD LS SB SS IV RO SL HL LR _ FI 0x07 FiltError FiltNum1 _ 0x08 _ Reserved FiltExp FiltNum2 0x09 _ Reserved HLinMax FiltNum3 FiltDen2 0x0A _ MagSenseHi FiltDen3 0x0B _ MagSenseLo SegLinCoeff_1 Linear SegLinCoeff_2 0x0C Harmonic HarLinPhase_1 Adv HarLinAmp_1 Linear SegLinCoeff_4 SegLinCoeff_3 0x0D Harmonic HarLinPhase_2 Adv HarLinAmp_2 Linear SegLinCoeff_6 SegLinCoeff_5 0x0E Harmonic HarLinPhase 3 Adv HarLinAmp_3 SegLinCoeff_8 SegLinCoeff_7 Linear 0x0F Harmonic HarLinPhase_4 Adv HarLinAmp_4 SegLinCoeff_10 SegLinCoeff_9 Linear 0x10 Harmonic HarLinPhase_5 Adv HarLinAmp_5 Linear SegLinCoeff_12 SegLinCoeff_11 0x11 Harmonic HarLinPhase_6 Adv HarLinAmp_6 Linear SegLinCoeff 14 SegLinCoeff 13 0x12 HarLinPhase_7 Adv HarLinAmp_7 Harmonic Linear SegLinOffset SegLinCoeff_15 0x13 HarLinPhase_8 Adv HarLinAmp_8 Harmonic Harmonic HarLinPhase_9 Adv HarLinAmp_9 0x14 0x15 Harmonic HarLinPhase_10 Adv HarLinAmp_10 0x16 Harmonic HarLinPhase_11 Adv HarLinAmp_11 0x17 Harmonic HarLinPhase_12 Adv HarLinAmp_12 0x18 Harmonic HarLinPhase_13 Adv HarLinAmp_13 0x19 Harmonic HarLinPhase 14 Adv HarLinAmp_14 Harmonic HarLinPhase_15 Adv HarLinAmp_15 0x1A

SRAM Register Reference

Address: 0x000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name															(Cmd	Statu	5														
Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W																
Use*	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

*B = binary whole number

CmdStatus [31:0] Command Status

Indicates the status of the last EEPROM write, ROM Checksum Test, or CVH Self-Test command sent to the device.

Bit	Value	Description
	0	No data (Default).
31:0	Various	Refer to description of commands.

SRAM Register Reference (continued)

Address: 0x01

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								Max	Angle	!														MinA	Angle							
Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W								
Use*	В	В	В	В	В	В	В	В	В	В	В	В	Р	Р	Р	Р	В	В	В	В	В	В	В	В	В	В	В	В	Р	Р	Р	Р
Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

*B = binary whole number, P = padding for shifted values or for storing intermediate values during computation

MaxAngle [31:16]

Maximum Input Angle

Sets the maximum raw measured angle (after Pre-Linearization Rotation (0x06[LR]) and Gain Offset (0x03[GainOffset]), but before scaling by Gain (0x03[Gain]) used for short-stroke limit test, in angle resolution units (for conversion from angular degrees, see section Angle Resolution for SRAM). If the angle exceeds the targeted dynamic range, sets the AH error flag in the primary serial interface. Initialized by EEPROM field MAX_ANGLE.

0x06[SS] must be set to 1 to enable this function. To disable angle boundary checking, set this value to 0, and MinAngle to 0.

When programming this value directly to the EEPROM field, MAX_ ANGLE, only the 12 MSBs, 23:12 are available. Note that, when the device is initialized, SRAM bits 31:20 are populated from EEPROM, and SRAM bits 19:16 are zeros-padded, but after initialization all 16 SRAM bits can be modified by the user (unsigned 16 bit). If the limit is exceeded, the output angle reported will be the value defined by ClampHi.

Note: If HAR_MAX (EEPROM) > 9, this field is set to 0 when SRAM is loaded from EEPROM.

Bit	Value	Description
21.16	0	Disable maximum angle check.
31.10	1 to 0xFFFF	Maximum angle for short-stroke limit test, in angular resolution units.

MinAngle [15:0] Minimum Input Angle

Sets the minimum raw measured angle (after Pre-Linearization Rotation (0x06[LR]) and Gain Offset (0x03[GainOffset]), but before scaling by Gain (0x03[Gain]) used for short-stroke limit test, in angle resolution units (for conversion from angular degrees, see section Angle Resolution for SRAM). Setting this field to 0 will effectively disable this feature. This allows debugging and diagnostics of a possible broken sensor assembly. Used as a diagnostic point if the angle exceeds the targeted dynamic range, sets the AL error flag in the Primary Serial Interface. Initialized by EEPROM field MIN_ANGLE.

0x06[SS] must be set to 1 to enable this function. To disable angle boundary checking, set this value to 0, and MaxAngle to 0.

When programming this value directly to the EEPROM field, MIN_ANGLE, only the 12 MSBs, 11:0 are available. When the device is initialized, SRAM bits 15:4 are populated from EEPROM, and SRAM bits 3:0 are zero-padded, but after initialization all 16 SRAM bits can be modified by the user (unsigned 16 bit). If the limit is exceeded, the output angle reported will be the value defined by ClampLo.

Note: HAR_MAX (EEPROM) > 9, this field is set to all zeros when SRAM is loaded from EEPROM.

Bit	Value	Description
15.0	0	Zero value essentially disables the feature, and is the default programmed value.
15.0	1 to 0xFFFF	Minimum angle for short-stroke limit test, in angular resolution units.

SRAM Register Reference (continued)

Address: 0x02

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								Clar	npHi															Clan	npLo							
Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W							
Use*	В	В	В	В	В	В	В	В	В	В	В	В	Р	Р	Р	Р	В	В	В	В	В	В	В	В	В	В	В	В	Р	Р	Р	Р
Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

*B = binary whole number, P = padding for shifted values or for storing intermediate values during computation.

ClampHi [31:16]

High Clamp Angle

Sets the maximum allowed angle output value for a short-stroke application, after all other angle processing steps are complete, in angle resolution units (for conversion from angular degrees, see section Angle Resolution for SRAM). If the processed angle exceeds ClampHi, then the output angle will be clamped at ClampHI. This is used with ClampLo to limit the output dynamic range (set by GAIN_OFFSET). ClampHi × 360° / 65,536 sets the clamping angle; for example, 62,259 × 360° / 65,536 \approx 342°. Initialized by EEPROM field CLAMP_HIGH.

0x06[SS] must be set to 1 to enable this function. To disable angle clamp checking, set this value to 65,535, and ClampLo to 0.

When programming this value directly to the EEPROM field, CLAMP_ HIGH, only the 12 MSBs, 23:12 are available. Note that, when the device is initialized, SRAM bits 31:20 are populated from EEPROM, and SRAM bits 19:16 are zero-padded, but after initialization all 16 SRAM bits, can be modified by the user (unsigned 16 bit).

Note: If HAR_MAX (EEPROM) > 10, this field is set to 0xFFF0 when SRAM is loaded from EEPROM.

Bit	Value	Description
31:16	0 to 0xFFFF	High clamp limit in angle resolution units.

ClampLo [15:0] Low Clamp Angle

Sets the minimum allowed angle output value for a short-stroke application, after all other angle processing steps are complete, in angle resolution units (for conversion from angular degrees, see section Angle Resolution for SRAM). If the processed angle is less than ClampLo, then the output angle will be clamped at ClampLo. This is used with ClampHi to limit the output dynamic range (set by GAIN_OFFSET). ClampLo × 360° / 65,536 sets the clamping angle; for example, 600 × 360° / 65,536 \approx 52.7°. Initialized by EEPROM field CLAMP_LOW.

0x06[SS] must be set to 1 to enable this function. To disable angle clamp checking, set this value to 0, and ClampHi to 65535.

When programming this value directly to the EEPROM field, CLAMP_LOW, only the 12 MSBs, 11:0 are available. Note that, when the device is initialized, SRAM bits 15:4 are populated from EEPROM, and SRAM bits 3:0 are zero-padded, but after initialization all 16 SRAM bits, can be modified by the user (unsigned 16 bit).

Note: If HAR_MAX (EEPROM) > 10, this field is set to all zeros when SRAM is loaded from EEPROM.

Bit	Value	Description
15:0	0 to 0xFFFF	Low clamp limit in angle resolution units.

SRAM Register Reference (continued)

Address: 0x03

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								Gain	Offse	t														Ga	ain							
Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W							
Use*	В	В	В	В	В	В	В	В	В	В	В	В	Р	Р	Р	Ρ	Ρ	Р	Р	Ρ	В	В	В	В	В	В	В	В	В	В	В	В
Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

*B = binary whole number, P = padding for shifted values or for storing intermediate values during computation.

GainOffset [31:16]

Gain Offset

Sets the offset value used to set the zero-reference point of the angle output value range (that is, to set the zero error point to which the Gain is applied), after Pre-Linearization Rotation (0x06[LR]), but before the Gain value is applied. Gain Offset is subtracted from the angle before multiplication by the Gain. Note that this operation is performed whether 0x06[SS] is set or not.

Initialized by EEPROM field GAIN_OFFSET. (When programming this value directly to the EEPROM field, GAIN_OFFSET, only the 12 MSBs, 23:12 are available.) Note that, when the device is initialized, SRAM bits 31:20 are populated from EEPROM, and SRAM bits 19:16 are zero-padded, but after initialization all 16 SRAM bits can be modified by the user (unsigned 16 bit).

Note: If HAR_MAX (EEPROM) > 11, this field is set to all zeros when SRAM is loaded from EEPROM.

Bit	Value	Description
31:16	0 to 0xFFFF	Offset value in angle resolution units.

Gain [15:0]

Gain

This sets the gain, to apply the full dynamic range of the processor for converting the input to an output angle. Applied gain is 1 plus the total value set in the Gain field. Therefore, the default value for Gain (all bits set to 0) is 1 (sets the dynamic range to 360°).

0x06[SS] must be set to 1 to enable this function. Initialized by EEPROM field GAIN. When programming this value directly to the EEPROM field, GAIN, only the 12 MSBs, 11:0 are available. Note that, when the device is initialized, SRAM bits 11:0 are populated from EEPROM, and SRAM bits 15:12 are zero-padded, but after initialization all 16 SRAM bits can be modified by the user (unsigned 16 bit).

It is recommended that the Gain not be greater than 16 (entered as 15.00, or 0000 1111 0000 0000), which expands a 22.5 degree range to a full 360 degree range $(360^{\circ} / [15+1] = 22.5^{\circ})$. Given this recommendation, bits 15:12 will always be zero.

Example, for an application angle stroke = 55° and a full scale = $360^{\circ}/1$. $360^{\circ}/55^{\circ} = 6.54$. Because the default Gain is offset by 1, subtract 1 and program a value of 5.54. The closest setting is $0101(.)1000\ 1011$ (5.546875 decimal). Write the bit array to EEPROM as 0x58C.

Note: If HAR_MAX (EEPROM) > 11, this field is set to all zeros when SRAM is loaded from EEPROM.

Bit	Value	Description
15:0	0 to 0xFFFF	Gain scale factor – 1.

SRAM Register Reference (continued)

Address: 0x04

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								Bad	Tsen															Bad/	Angle							
Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W								
Use*	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

*B = binary whole number

BadTsen [31:16]

Out-of-Range Temperature

Stores the temperature value (unsigned 16 bit) when the device detects an internal temperature that is out of the allowed operation range. The TR bit in the primary serial interface XERR register is set to 1. The encoded value in this field, n, is converted as $n \times 1/8 =$ Kelvin.

Example: 1010 1010 1011 (0xAAB) represents 2731 / 8 decimal, or 341.375 K (approximately 68.23°C).

Bit	Value	Description
31:16	0 to 0xFFFF	Out of range temperature, in Kelvin.

BadAngle [15:0] Out-of-Range Angle

Stores the angle value (unsigned 16 bit) when the device detects an angle value (before truncating according to ClampHi or ClampLo) that exceeds the MaxAngle or MinAngle setting. The AH bit or AL bit in the primary serial interface XERR register is set to 1 for a MaxAngle or MinAngle violation, respectively.

Bit	Value	Description
15:0	0 to 0xFFFF	Unclamped angle reading, in angle resolution units.

SRAM Register Reference (continued)

Address: 0x05

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								Misc	Status	5													Ba	adMa	gSen	se						
Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W							
Use*	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

*B = binary whole number

MiscStatus [31:16]

Miscellaneous Status

Additional status saved by the CVH Self-Test diagnostic. If a fault occurs, sets the ST error flag in the XERR primary serial interface register.

Bit	Value	Description
	0	No faults detected following last CVH self-test diagnostic.
31:16	0xFF	An internal timeout occurred during the diagnostic.
	Other	Count of angle-sensing Hall elements that failed the diagnostic.

BadMagSense [15:0] Out-of-Range Magnetic Signal

Stores the sensed magnetic field strength (unsigned 16 bit) when the device detects a magnetic field value that exceeds the MagSenseHi or MagSenseLo setting. Sets the MH error flag (for MagSenseHi violations) or ML error flag (for MagSenseLo violations) in the ERR primary serial interface register.

Bit	Value	Description
15:0	0 to 0xFFFF	Magnetic field strength in gauss that exceeded the programmed limits.

SRAM Register Reference (continued)

Address: 0x06

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Namo								Alg	Enb															Zorol	Offoo							
Name	-	-	-	-	RD	LS	SB	SS	-	IV	RO	SL	HL	LR	-	FI								Zelo	Jise	L						
Read/ Write	-	-	-	-	R/W	R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W														
Use*	х	Х	х	х	В	В	В	В	Х	В	в	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	Р	Р	Ρ	Р
Value	-	-	-	-	0/1	0/1	0/1	0/1	-	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

*B = binary whole number, P = padding for shifted values or for storing intermediate values during computation, X = not used.

RD [27] Rotate Die

Rotates the final angle by 180 degrees. Last step of angle algorithm. Can be used to align/misalign angle output from both die when using the dual die version.

Bit	Value	Description
	0	No rotation.
27	1	Add 180 degrees to angle then normalize.

LS [26]

Segmented Linearization Select

Determines the reference index-axis for evaluating signal eccentricity when segmented linearization is being used. Reference angles sampled in segments of 22.5 degrees. When moving in even steps as measured by an external encoder set SL to 0 (this is the most common method). Initialized by EEPROM field LS.

Bit	Value	Description
26	0	External encoder reading.
20	1	A1335 internal reading.

SB [25]

Segmented Linearization Bypass

A special override that applies the SegLinOffset value (0x13[31:16]) when segmented linearization is performed, but does not perform the actual linearization. This function can be used to take the measurements required for segmented without having to otherwise program the linearization table to a straight line. SL must be set to 1. Initialized by EEPROM field SB.

Bit	Value	Description
25	0	Allow application of SegLinCoeffs.
25	1	Prevent application of SegLinCoeffs.

SS [24] Short Stroke Mode

Used when a limited range of target relative rotation is anticipated. Enables application of MinAngle, MaxAngle, ClampHi, ClampLo, and Gain values. Initialized by EEPROM field SS.

Bit	Value	Description
24	0	Disable short-stroke specific angle processing.
24	1	Enable short-stroke specific angle processing.

IV [22] Invert Angle

Determines if the post-linearization angle output is the calculated angle or the inverted angle relative to the ClampHi value. Initialized by EEPROM field IV.

Bit	Value	Description
	0	Output calculated angle in angle resolution units.
22	1	Output inverted angle (= ClampHi – Calculated Angle), in angle resolution units.

RO [21] Rotation Direction

This bit determines which direction of rotation of the magnet relative to the die corresponds to an increasing angle output (applied after linearization). See also LR. Initialized by EEPROM field RO.

Bit	Value	Description
21	0	Output angle value increases with clockwise rotation (viewing from above the magnet and device, with device mounted "on-axis" with the magnet) (Default).
21	1	Output angle value increases with counterclockwise rotation (viewing from above the magnet and device, with device mounted "on-axis" with the magnet).

Continued on the next page...

SRAM Register Reference (continued)

Address: 0x06 (continued)

SL [20]

Segmented Linearization

Enables segmented linearization during angle processing. See also HL for harmonic linearization. See LO if both segmented and harmonic linearization are to be used.

Bit	Value	Description
20	0	Disable segmented linearization.
20	1	Enable segmented linearization.

HL [19]

Harmonic Linearization

Enables harmonic linearization during angle processing. See also SL for segmented linearization. See LO if both segmented and harmonic linearization are to be used.

Bit	Value	Description
10	0	Disable harmonic linearization.
19	1	Enable harmonic linearization.

LR [18]

Pre-Linearization Rotation Direction

This bit determines which direction of rotation of the magnet relative to the die corresponds to an increasing angle output (applied prior to linearization). See also RO. Initialized by EEPROM field LR.

Bit	Value	Description
10	0	Output angle value increases with clockwise rotation (viewing from above the magnet and device, with device mounted "on-axis" with the magnet).
10	1	Output angle value increases with counterclockwise rotation (viewing from above the magnet and device, with device mounted "on-axis" with the magnet).

FI [16] Filter Enable

This bit enables filtering the input angle signal before linearization. The type of filter is selected by the FILTNumx fields. Initialized by EEPROM field FI.

Bit	Value	Description
	0	Disable angle filtering (Default).
16	1	Enable angle filtering.

ZeroOffset [15:0] Zero Offset Angle

Sets the output angular offset to relocate the 0 degree reference point for the output angle. Applied after linearization in the processor, this value is subtracted from the computed angle to yield the output angle.

Initialized by EEPROM field ZERO_OFFSET. When programming this value directly to the EEPROM field, ZERO_OFFSET, only the 12 MSBs (11:0) are available. Note that, when the device is initialized, SRAM bits 15:4 are populated from EEPROM, and SRAM bits 3:0 are zero-padded, but after initialization all 16 SRAM bits can be modified by the user (unsigned 16 bit).

Bit	Value	Description
15:0	0 to 0xFFFF	Enter angle offset in angle resolution units.

SRAM Register Reference (continued)

Address: 0x007

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	ame FiltError									FiltNum1																						
Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Use*	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	В	В	В	В	S	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

*B = binary whole number, P = padding for shifted values or for storing intermediate values during computation, S = binary number sign (signed numbers only).

FiltError[31:16]

Filter Error Reset Threshold

Sets the error window value for filter reset. This setting determines how far the filtered value can vary away from the input sampled value. If the absolute difference between the filtered value and sampled value exceed this number, the filter will reset and flush. The encoded value in this field, n, is converted as $n \times (360/32768)$ = angular degrees, giving a resolution of approximately 0.01 degrees per bit.

Initialized by EEPROM field IIR_ERRVAL. When programming this value directly to the EEPROM field, IIR_ERRVAL, only the 4 MSBs (19:16) are available. Note that, when the device is initialized, SRAM bits 23:20 are populated from EEPROM, and SRAM bits 31:24 and 19:16 are zero-padded, but after initialization all 16 SRAM bits can be modified by the user (unsigned 16 bit).

Bit	Value	Description
	0	Disables the filter reset threshold function
31:16	0x01 to 0xFFFF	Filter reset value.

FiltNum1[15:0] Filter Numerator One

Sets the first numerator value for the filter. Value is scaled by 2^{-X} , where x is the value in 0x08[FiltExp], to determine the target filter value. Initialized by EEPROM field IIR_FILTER_NUM1. The encoded value in bits 14:0, n, is converted as $n \times (1/16384)$, giving a positive value in the range of $0 \le n < 2.0$, with a resolution of 0.00006 per bit (this is before additional scaling by the FiltExp value, if that field is non-zero). To represent a negative value, set the sign bit 15 to 1.

Bit	Value	Description
15	0	Multiply [14:0] by 1.
15	1	Multiply [14:0] by -1.
14:0	0/1	Filter numerator unsigned value (not a two's complement value).

SRAM Register Reference (continued)

Address: 0x008

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	Vame Reserved FiltExp																			FiltN	um2											
Read/ Write	-	-	-	-	-	-	-	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W											
Use*	х	Х	Х	х	х	Х	Х	х	Р	Р	Р	В	В	В	В	В	S	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Value	-	-	-	-	-	-	-	-	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

*B = binary whole number, P = padding for shifted values or for storing intermediate values during computation, S = binary number sign (signed numbers only), X = not used.

FiltExp[23:16]

Filter Numerator Exponential Scale Factor

Internal filter numerator values, FiltNumx, are scaled by 2^{-X} , where X is the value in this field. Used to increase precision for very small numerators. This value applies to all three filter numerators.

Initialized by EEPROM field IIR_NSCALE. When programming this value directly to the EEPROM field, IIR_NSCALE, only the 5 MSBs (20:16) are available. Note that, when the device is initialized, SRAM bits 20:16 are populated from EEPROM, and SRAM bits 23:21 are zero-padded, but after initialization all 8 SRAM bits can be modified by the user (unsigned 8 bit).

Bit	Value	Description
23:16	0 to 0xFF	Numerator scaling value.

FiltNum2[15:0] Filter Numerator Two

Sets the second numerator value for the filter. Value is scaled by 2^{-X} , where *X* is the value in FiltExp, to determine the target filter value. Initialized by EEPROM field IIR_FILTER_NUM2. The encoded value in bits 14:0, n, is converted as $n \times (1/16384)$, giving a positive value in the range of $0 \le n < 2.0$, with a resolution of 0.00006 per bit (this is before additional scaling by the FiltExp value, if that field is non-zero). To represent a negative value, set the sign bit 15 to 1.

Bit	Value	Description
15	0	Multiply [14:0] by 1.
15	1	Multiply [14:0] by -1.
14:0	0/1	Filter numerator unsigned value (not a two's complement value).

SRAM Register Reference (continued)

Address: 0x009

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	ne Reserved HLinMax																					FiltN	lum3									
Read/ Write	-	-	-	-	-	-	-	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W													
Use*	Х	х	Х	х	Х	Х	Х	Х	Р	Р	Р	Р	В	В	В	В	s	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Value	-	-	-	-	-	-	-	-	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

*B = binary whole number, P = padding for shifted values or for storing intermediate values during computation, S = binary number sign (signed numbers only), X = not used.

HLinMax [23:16]

Harmonic Linearization Maximum Offset

This setting determines how many individual harmonic components are used for computing harmonic linearization. (The Adv fields are used to determine which harmonics are applied for each component. When loading from EEPROM, the number of harmonics is capped at 11. Following EEPROM boot this number may be increased up to 15.)

Initialized by EEPROM field HAR_MAX. Applied if [0x06]HL is set to 1.

Note: If 10 to 11 is entered, for each, an EEPROM register (0x15 through 0x1A, in sequence) is converted for harmonic linearization, and those default features are eliminated. This applies to the value of this field in the EEPROM only. When writing to SRAM at initialization, default values are applied to the fields configuring those features that were changed to harmonic coefficients, and the harmonic coefficients are written separately to dedicated fields in SRAM.

LO should also be configured when combining segmented and harmonic linearization.

Bit	Value	Description
23:20	0	Zero padding.
19:16	1 to 0xF	Enter quantity of components for harmonic linearization.

FiltNum3[15:0]

Filter Numerator Three

Sets the third numerator value for the filter. Value is scaled by 2^{-X} , where *X* is the value in 0x08[FiltExp], to determine the target filter value. Initialized by EEPROM field IIR_FILTER_NUM3. The encoded value in bits 14:0, n, is converted as $n \times (1/16384)$, giving a positive value in the range of $0 \le n < 2.0$, with a resolution of 0.00006 per bit (this is before additional scaling by the FiltExp value, if that field is non-zero). To represent a negative value, set the sign bit 15 to 1.

Bit	Value	Description
15	0	Multiply [14:0] by 1.
15	1	Multiply [14:0] by -1.
14:0	0 to < 2.0	Filter numerator unsigned value (not a two's complement value).

SRAM Register Reference (continued)

Address: 0x00A

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	Jame MagSenseHi																				FiltD)en2										
Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Use*	Р	Р	Р	Р	Ρ	В	В	В	В	В	Р	Р	Р	Р	Р	Р	S	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

*B = binary whole number, P = padding for shifted values or for storing intermediate values during computation, S = binary number sign (signed numbers only).

MagSenseHi [31:16]

Magnetic Sense High Threshold

Sets the upper limit for the applied magnetic field level, in gauss. If the field amplitude level rises above the computed level, sets the error flag MH in the primary serial interface.

Initialized by EEPROM field MAG_HIGH. When programming this value directly to the EEPROM field, MAG_HIGH, only bits 26:22 are available, meaning that only multiples of 40 gauss can be set as the MAG_HIGH limit (0, 40, 80, ... 1240). Note that, when the device is initialized, SRAM bits 26:22 are populated from the EEPROM, and bits 31:27 and 21:16 are zero-padded, but after initialization all 16 SRAM bits can be modified by the user (unsigned 16 bit).

Bit	Value	Description
	0	Disable Magnetic Sense High Check.
31:16	0x0001 to 0xFFF	Upper limit factor.

FiltDen2[15:0] Filter Denominator Two

Sets the second denominator value for the filter. The encoded value in bits 14:0, n, is converted as $n \times (1/16384)$, giving a positive value in the range of $0 \le n < 2.0$, with a resolution of 0.00006 per bit (this is before additional scaling by the FiltExp value, if that field is non-zero). To represent a negative value, set the sign bit 15 to 1.

Denominator is combined with the numerator value FiltNum2 as scaled by FiltExp to determine the target filter value. Initialized by EEPROM field IIR_FILTER_DEN2.

Bit	Value	Description
15	0	Multiply [14:0] by 1.
15	1	Multiply [14:0] by -1.
14:0	0 to < 2.0	Filter denominator unsigned value (not a two's complement value).

SRAM Register Reference (continued)

Address: 0x00B

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	ame MagSenseLo																					FiltD)en3									
Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Use*	Р	Р	Р	Р	Р	Ρ	Р	Р	В	В	В	В	В	Р	Ρ	Р	S	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

*B = binary whole number, P = padding for shifted values or for storing intermediate values during computation, S = binary number sign (signed numbers only).

MagSenseLo [31:16]

Magnetic Sense Low Threshold

Sets the lower limit for the applied magnetic field level, in gauss. If the field amplitude level falls below the computed level, sets the error flag ML in the primary serial interface.

Initialized by EEPROM field MAG_LOW. When programming this value directly to the EEPROM field, MAG_LOW, only bits 23:19 are available, meaning that only multiples of 20 gauss can be set as the MAG_LOW limit (0, 20, 40, ... 620). Note that, when the device is initialized, SRAM bits 23:19 are populated from the EEPROM, and bits 31:24 and 18:16 are zero-padded, but after initialization all 16 SRAM bits can be modified by the user (unsigned 16 bit).

Bit	Value	Description
31:16	0 to 0xFFFF	Lower limit factor.

FiltDen3[15:0] Filter Denominator Three

Sets the third denominator value for the filter. The encoded value in bits 14:0, n, is converted as $n \times (1/16384)$, giving a positive value in the range of $0 \le n < 2.0$, with a resolution of 0.00006 per bit (this is before additional scaling by the FiltExp value, if that field is non-zero). To represent a negative value, set the sign bit 15 to 1.

Denominator is combined with the numerator value FiltNum3 as scaled by FiltExp to determine the target filter value. Initialized by EEPROM field IIR_FILTER_DEN3.

Bit	Value	Description
15	0	Multiply [14:0] by 1.
15	1	Multiply [14:0] by -1.
14:0	0 to < 2.0	Filter denominator unsigned value (not a two's complement value).

SRAM Register Reference (continued)

Address: 0x0C through 0x01A

(Segmented Linearization 0x06[SL] = 1, Harmonic Linearization 0x06[HL] = 0 or 1)

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name (0x0C to 0x12)		SegLinCoeff_[Even: 2 through 14]							SegLinCoeff_[Odd: 1 through 13]																							
Name (0x13)		SegLinOffset							SegLinCoeff_15																							
Name (0x14 to 0x1A)						Har	LinPł	nase_	_[9 th	rough	15]						A	dv					На	rLinA	.mp_[9 thro	ough	15]				

(Segmented Linearization 0x06[SL] = 0, Harmonic Linearization 0x06[HL] = 0 or 1)

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name (0x0C to 0x1A)						Har	LinPł	nase_	[1 thr	ough	15]						A	vb					На	rLinA	mp_[1 thro	bugh	15]				
Read/ Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						
Use*	В	В	В	В	В	В	В	В	В	В	В	В	Ρ	Ρ	Ρ	Ρ	В	В	В	В	В	В	В	В	В	В	В	В	Ρ	Ρ	Ρ	Ρ
Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

*B = binary whole number, P = padding for shifted values and for storing values during operation.

SegLinCoeff_n [31:16, 15:0]

Segmented Linearization Coefficients

Store individual segmented linearization coefficients. The encoded value in this field, n, is converted as $n \times (360/65536) =$ angular degrees. These coefficients represent the start points of each segment of a 16-segment curve, where each segment spans 22.5 degrees of the reference axis as determined by the LS bit in the SRAM AlgEnb register. The end point of any segment is the start point of the next higher segment. The start point of the first segment is always 0, and the end point of the curve is always 360 degrees, therefore only 15 coefficients are used to represent the intermediate segment boundaries.

If LS = 0, then the coefficients represent the angle-sensor reading when the encoder (absolute angle) reading is at the segment boundary value (22.5, $45.0 \dots 337.5$ degrees).

If LS=1, then the coefficients represent the encoder (absolute angle) value when the angle-sensor reads the segment boundary value, which must be determined by experimentally sweeping the encoder and reading the sensor until the output reads the segment boundary value.

Set [0x06]SL to 1 to apply segmented linearization.

Initialized for each segment by EEPROM SEG_LIN_COEFF_n fields. When programming this value directly to the EEPROM field, EEPROM SEG_LIN_COEFF_n, only the 12 MSBs (23:12) are available. Note that, when the device is initialized, SRAM bits 31:20 are populated from EEPROM, and SRAM bits 19:16 are zero-padded, but after initialization all 16 SRAM bits can be modified by the user (unsigned 16 bit). If SL is set to 0 these registers convert to represent HarLinPhase_n (fields 31:16), and Adv (15:14) with HarLinAmp_n (13:0).

Bit	Value	Description
31:16	0 to 0xFFFF	Segment coefficient (equivalent 0 to 360 degrees), in angle resolution units.

SegLinOffset 0x13[31:16]

Segmented Linearization Offset

The prelinearization angle value that will be the initial (zero) point for segmented linearization; that is, the zero point on the error curve. The encoded value in this field, n, is converted as $n \times (360/65536)$ = angular degrees.

Initialized by EEPROM field SEG_LIN_OFFSET. When programming this value directly to the EEPROM field, SEG_LIN_OFFSET, only the 12 MSBs (23:12) are available. Note that, when the device is initialized, SRAM bits 31:20 are populated from EEPROM, and SRAM bits 19:16 are zero-padded, but after initialization all 16 SRAM bits can be modified by the user (unsigned 16 bit).

If [0x06]SL is set to 0, this field converts to represent [0x13]HarLinPhase.

Bit	Value	Description
31:16	0 to 0xFFFF	Initial angle value for segmented linearization.

SRAM Register Reference (continued)

Address: 0x0C through 0x01A (continued)

HarLinPhase_n [31:16]

Harmonic Linearization Phase Coefficients

Store individual harmonic linearization phase coefficients. The encoded value in this field, n, is converted as $n \times (360/65536)$ = angular degrees.

Initialized for each component by EEPROM HARMONIC_PHASE_n fields. When programming this value directly to the EEPROM fields, HARMONIC_PHASE_n, only the 12 MSBs (23:12) are available. Note that, when the device is initialized, SRAM bits 31:20 are populated from EEPROM, and SRAM bits 19:16 are zero-padded, but after initialization all 16 SRAM bits can be modified by the user (unsigned 16 bit). Set [0x06] HL to 1 to apply harmonic linearization.

Note: A maximum of 11 harmonics can be populated from EEPROM (registers 0x0C through 0x16). Up to 15 harmonics may be written to SRAM (registers 0x17 through 0x1A), and used for compensation. This value is only stored in volatile memory and will be lost after power off.

Bit	Value	Description
31:16	0 to 0xFFFF	Harmonic component phase coefficient (equivalent 0 to 360 degrees), in angle resolution units.

Adv [15:14] Harmonic Advance Count

Sets the increment between sequential pairs of applied harmonic components. The value entered, n (in the range 0 to 3), indicates how many harmonics to be skipped from the previous component to the current component.

The count is applied as 1 + n. For example, the first component (0x0C) minimum (n = 0) is the 1st harmonic and the maximum (n = 3) is the 4th harmonic. The effect is cumulative; when all components are set to n = 3, the 60th harmonic is available at the fifteenth component (0x1A).

Initialized for each component by EEPROM ADV fields.

If [0x06]SL = 0, the 8 SegLinCoeff_n fields (15:0) in registers 0x0C through 0x13 convert to represent Adv (and HarLinAmp) fields.

Note: A maximum of 11 harmonics can be populated from EEPROM (registers 0x0C through 0x16). Up to 15 harmonics may be written to SRAM (registers 0x17 through 0x1A), and used for compensation. This value is only stored in volatile memory and will be lost after power off.

Bit	Value	Description
15:14	0 to 0x11	Count for skipped harmonics between components.

HarLinAmp_n [13:0]

Harmonic Linearization Amplitude Coefficients

Store individual harmonic linearization amplitude coefficients. The encoded value in this field, n, is converted as $n \times (360/131072)$ = angular degrees.

Initialized for each component by EEPROM HARMONIC_AMPLITUDE_n fields. When programming this value directly to the EEPROM fields, HARMONIC_AMPLITUDE_n, only the 12 MSBs (23:12) are available. Note that, when the device is initialized, SRAM bits 13:4 are populated from EEPROM, and SRAM bits 3:0 are zero-padded, but after initialization all 14 SRAM bits can be modified by the user (unsigned 14 bit).

If [0x06]SL = 0, the 8 SegLinCoeff_n fields (15:0) in registers 0x0C through 0x13 convert to represent HarLinAmp (and Adv) fields.

Note: A maximum of 11 harmonics can be populated from EEPROM (registers 0x0C through 0x16). Up to 15 harmonics may be written to SRAM (registers 0x17 through 0x1A), and used for compensation. This value is only stored in volatile memory and will be lost after power off.

Bit	Value	Description
13:0	0 to 0x3FFF	Harmonic component amplitude coefficient (equivalent 0 to 45 degrees), in angle resolution units.

EEPROM Description and Programming

The EEPROM is the internal non-volatile storage, used for configuring the power-up state of the A1335. Some locations are pre-programmed and not rewriteable. Those locations described in this section are rewriteable. At power-up, or following a hard reset, the contents of this EEPROM are read and used to configure the A1335. Most of the parameters are moved into the SRAM for quick access by the processor and can be temporarily changed via the serial interface, although some words are used to configure hardware registers, or are moved to non-accessible SRAM locations.

Each EEPROM word contains 24 data bits. One word may contain multiple configuration fields. All fields in a word must be read and written together. The EEPROM is read and written via the extended access protocol described in section I²C Extended Access Protocol using extended addresses 0x306 through 0x31A. Writing the EEPROM also requires application of higher voltage pulses on the VCC pin as described in the A1335 datasheet.

The location and format of configuration parameters in the SRAM differ from those in the EEPROM, so conversion is necessary. Of specific note is that the resolution of values related to angle processing is different in the SRAM versus the EEPROM, with the SRAM maintaining higher resolutions to reduce the error associated with mathematical processing of the angle. The A1335 does all needed conversions when loading the EEPROM into SRAM. However, when updating the EEPROM any format conversions must be done external to the A1335. The following section details the address and format of the EEPROM writeable words. If the field is moved to SRAM, the detailed purpose of the field will be referenced back to that section.

Programming EEPROM

The device utilizes EEPROM to permanently store configuration parameters for operation. As a result, writing to EEPROM requires a specific order of events so there are no accidental writes to the interface.

The first step is to unlock the device. After the A1335 has been unlocked for writing, the processor must be set to Idle mode (set primary serial interface register CTRL [CDS field]). EEPROM cannot be written unless the A1335 is in Idle mode.

After Programming mode is unlocked at power-on, EEPROM registers can be preloaded with data. The serial interface is used for preloading (via the SPI, I2C or Manchester interface).

The final step in writing to EEPROM is sending programming pulses on the EEPROM programming pin (the VCC pin) to set the bitfields. The V_{CC} pulse profile necessary for EEPROM programming is shown in Figure 17. Minimum and maximum times are described in Table 17. After EEPROM has been written, it is recommended to cycle power to the device.

Figure 17: V_{CC} Pulse Profile for EEPROM Programming

Table 17: EEPROM Pulse

Parameter	Comments	Min.	Тур.	Max.	Unit
Pulse High Time	Time above minimum pulse voltage	8	10	11	ms
Rise Time	10% to 90% of minimum pulse level	300	Ι	-	μs
Fall Time	10% to 90% of minimum pulse level	60	-	-	μs
Pulse Voltage		18	19	19.5	V
Separation time	Time between first pulse dropping below 6 V and 2nd pulse rising above 6 V	2 µs	Ι	50 ms	µs/ms

Unlocking EEPROM

The EEPROM in the device is unlocked using the serial interface. The device is unlocked by writing the Customer Keycode 0x27811F77 to the extended address 0xFFFE. After the device target device has been unlocked, the user can proceed to program parameters in the EEPROM addressing range (0x306 - 0x319).

The unlocking process is accomplished by the following commands in the serial interface:

- 1. Load the EWA (0x02, 0x03) register with the target extended address (0xFFFE).
 - a. Write 0xFF to 0x02 (MSB of extended address to ERA 0x02).

- b. Write 0xFE to 0x03 (LSB of extended address to ERA 0x03).
- 2. Load the EWD (07:04) register with the customer access code.
 - a. Write 0x27 to 0x04 (MSB of extended data to EWD).
 - b. Write 0x81 to 0x05.
 - c. Write 0x1F to 0x06.
 - d. Write 0x77 to 0x07 (LSB of extended address to EWD).
- 3. Invoke the extended addressing by writing the direct CTRL register EXW bit with 1. Write 0x80 to EWCS 0x08.

Dual Purpose Registers

There are eight registers in the EEPROM (addresses 0x30C through 0x313) that can be used for alternative purposes: either segmented linearization or harmonic linearization. The format used corresponds to the linearization method chosen. To choose segmented linearization, set the SL bit to 1 (bit 20 in the SRAM register 0x06, AlgEnb field).

An additional three words in the EEPROM (addresses 0x314 through 0x316) have different uses depending on the value in the HAR_MAX field in the EEPROM. HAR_MAX configures the number of harmonics used for harmonic linearization. If HAR_MAX is between 9 and 11, then the purpose of locations 0x314 through 0x316 are incrementally reassigned to be harmonic fields instead of their primary usage, a shown in the following table.

HAR_MAX Value in EEPROM	EEPROM Words Reassigned as Harmonic Format
9	0x314
10	Above, and 0x315
11	Above, and 0x316

The configuration for the primary usage is assigned a default value in the SRAM. These defaults can then be changed, if necessary, via the serial interface after power-up (SRAM must be unlocked to do so).

Reassigned Word	Default Value if Reassigned
0x14	GAIN_OFFSET = 0x000 GAIN = 0x0 (gives unit gain of 1.0)
0x15	MAX_ANGLE = 0 MIN_ANGLE = 0 (full angle range)
0x16	CLAMP_HIGH = 0xFFF CLAMP_LOW = 0 (full clamp range)

Self-Test Options

The DH and DC (0x309 bits 22 and 21) and DB (0x308 bit 21) bits are used only during the power-up process to disable self-tests. After the power-up process is complete, these bits are not retained in SRAM.

Configuration Flags

The GR, LI, FR, LE, and LM bits configure options that are not changeable after power-up. They are moved from EEPROM to locations that are not accessible via the serial interface, though they can be read via the extended access protocol.

Angle Resolution for EEPROM

The 12-bit value in this field (in *angle resolution* units) multiplied by (360/4096) equals the angle in degrees. This is the representation of an angle between 0 and 360 degrees ($0 \le \text{angle} < 360$) in the EEPROM field, and in the primary serial interface angle register (ANG) where 12 bits are used to represent the angle. This gives a resolution of 360/4096, approximately 0.088 degrees.

• To convert the field value to degrees: A 12-bit field value of 0110 1110 0001 (0x6E1) equals integer 1761 decimal. So 1761 × (360/4096) = 154.78 angular degrees (rounded to nearest 1/100).

• To convert degrees to the equivalent field value: An angle value of 317.88 degrees = $317.88 / (360 / 4096) = 317.88 \times (4096 / 360) = 3616.768$, or 3617 (rounded to nearest integer). This converts to a binary field value of $1110\ 0010\ 0001\ (0xE21)$.

Note that the difference in angle resolution between EEPROM and SRAM is 4 bits, and a simple conversion between the two formats is given in the section Angle Resolution for SRAM.

FADD	01-1-		Bits																						
EADR	State	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x306	_	RD	LS	SB	SS	0	IV	RO	SL	HL	LR	-	FI	ZERO OFFSET											
0x307	-		CL	IST			IRR_E	RRVAL		IIR_FILTER_NUM1															
0x308	-	ORATE DB FP_ADJ MAXID						D		IIR_FILTER_NUM2															
0x309	-	UI DH DC SC HAR_MAX (HM							IIR_FILTER_NUM3																
0x30A	-	FR	FR LE LM					MAG_HIGH					IIR_FILTER_DEN2												
0x30B	-	DM GR LI MAG_LOW								IIR_FILTER_DEN3															
0×300	Linear					SE	G_LIN	_COEFF	_2									SEG	_LIN_	COEF	F_1				
0,000	Harmonic					HAR	MONIC	C_PHAS	E_1					AD	V			Н	ARMC	DNIC_	AMPL	ITUDE	_1		
0×30D	Linear					SE	G_LIN	_COEFF	_4									SEG	_LIN_	COEF	F_3				
0,000	Harmonic					HAR	MONIC	C_PHAS	E_2					AD	V			H	ARMO	DNIC_	AMPL	ITUDE	_2		
0x30E	Linear					SE	G_LIN	_COEFF	_6									SEG	_LIN_	COEF	F_5				
	Harmonic					HAR	MONIC	C_PHAS	E_3					AD	V	HARMONIC_AMPLITUDE_3									
0x30E	Linear						SEG_LIN_COEFF_8							SEG_LIN_COEFF_7											
0,001	Harmonic					HARMONIC_PHASE_4					AD	V	HARMONIC_AMPLITUDE_4												
0v310	Linear						SEG_LIN_COEFF_10									SEG	_LIN_	COEF	F_9						
0,010	Harmonic					HAR	ARMONIC_PHASE_5					AD	ADV HARMONIC_AMPLITUDE_5												
0v311	Linear					SEG	G_LIN_	COEFF	OEFF_12						SEG_LIN_COEFF_11										
0,511	Harmonic					HAR	MONIC	MONIC_PHASE_6					AD	V	/ HARMONIC_AMPLITUDE_6										
0v312	Linear					SEG	6_LIN_	COEFF	_14					SEG_LIN_COEFF_13											
0,012	Harmonic					HARMONIC_PHASE_7					AD	.DV HARMONIC_AMPLITUDE_7													
0x313	Linear					SEG_LIN_OFFSET					SEG_LIN_COEFF_15														
0,010	Harmonic					HAR	MONIC	C_PHAS	E_8					AD	V			Н	ARMO	DNIC_	AMPL	ITUDE	_8		
0v314	HAR_MAX>8					HAR	MONIC	C_PHAS	E_9					AD	V	HARMONIC_AMPLITUDE_9									
	HAR_MAX<9					(GAIN_(OFFSET												GAI	N (4.8)			
0x315	HAR_MAX>9					HAR	NONIC	_PHASI	=_10					AD	V			H	ARMO	NIC_/	AMPL		_10		
0,010	HAR_MAX<10						MAX_	ANGLE								,		I	MIN_A	NGLE					
0x316	HAR_MAX>10		HARMONIC_PHASE_11				E_11					AD	V			H	ARMO	NIC_/	AMPL	ITUDE	_11				
	HAR_MAX<11	CLAMP_HIGH									CLAMP_HIGH														
0x317	-						CUST	OMER			r	·	r	-		SENT_TICK SM SENT_MODE									
0x318	_	SS	ES	AW	TR	SU	EU	WP	WT	RC	XE	ME	ST	-	XO	IE	CR	NR	AT	AH	AL	OV	UV	MH	ML
0x319	-	IS		IS SDRV PO I			DA	.TA_MO)E	CIS	sc	N_MC	DE	NS	ZS	DA FA XS I2C_SLAVE_ADDR			DAW	DR					

Table 18: EEPROM Registers Map (Factory Reserved Registers Not Shown)

EEPROM Register Reference

Address: 0x306

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	RD	LS	SB	SS	R	IV	RO	SL	HL	LR	-	FI					ZE	RO_(OFFS	ET				
Use*	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Default	0	0	0	0	0	0	0	0	0	0	Х	0	0	0	0	0	0	0	0	0	0	0	0	0

*B = binary whole number

RD [23]

Rotate Die

Initializes SRAM field RD. Rotates the final angle by 180 degrees. Last step of angle algorithm. Can be used to align/misalign angle output from both die when using the dual die version.

Bit	Value	Description
	0	No rotation.
23	1	Add 180 degrees to angle then normalize.

LS [22]

Segmented Linearization Select

Initializes SRAM field LS. Determines the reference index-axis for evaluating signal eccentricity when segmented linearization is being used. Reference angles sampled in segments of 22.5 degrees. SL must be set to 1.

Bit	Value	Description
22	0	External encoder reading.
22	1	A1335 internal reading.

SB [21]

Segmented Linearization Bypass

Initializes SRAM field SB. A special override that applies the SegLinOffset value (0x13 [31:16]) when segmented linearization is performed, but does not perform the actual linearization. This function can be used to take the measurements required for segmented without having to otherwise program the linearization table to a straight line. SL must be set to 1.

Bit	Value	Description
21	0	Allow application of SegLinCoeffs.
21	1	Prevent application of SegLinCoeffs.

SS [20]

Short Stroke Mode

Initializes SRAM field SS. Used when a limited range of target relative rotation is anticipated. Enables application of MinAngle, MaxAngle, ClampHi, ClampLo, and Gain values.

Bit	Value	Description
20	0	Disable short-stroke specific angle processing.
20	1	Enable short-stroke specific angle processing.

R [19]

Reserved

Always set this value to 0 when writing this EEPROM address.

IV [18] Invert Angle

Initializes SRAM field IV. Determines if the post-linearization angle output is the calculated angle or the inverted angle relative to the ClampHi value.

Bit	Value	Description
	0	Output calculated angle in angle resolution units.
18	1	Output inverted angle (= ClampHi – Calculated Angle), in angle resolution units.

RO [17] Rotation Direction

Initializes SRAM field RO. This bit determines which direction of rotation of the magnet relative to the die corresponds to an increasing angle output (applied after linearization). See also LR.

Bit	Value	Description
47	0	Output angle value increases with clockwise rotation (viewing from above the magnet and device, with device mounted "on-axis" with the magnet) (Default).
17	1	Output angle value increases with counterclockwise rotation (viewing from above the magnet and device, with device mounted "on-axis" with the magnet).

EEPROM Register Reference (continued)

SL [16]

Segmented Linearization

Initializes SRAM field SL. Enables segmented linearization during angle processing. See also HL for harmonic linearization.

Bit	Value	Description
16	0	Disable segmented linearization.
10	1	Enable segmented linearization.

HL [15]

Harmonic Linearization

Initializes SRAM field HL. Enables segmented linearization during angle processing. See also SL for segmented linearization.

Bit	Value	Description
15	0	Disable harmonic linearization.
15	1	Enable harmonic linearization.

LR [14]

Pre-Linearization Rotation Direction

Initializes SRAM field LR. This bit determines which direction of rotation of the magnet relative to the die corresponds to an increasing angle output (applied prior to linearization). See also RO.

Bit	Value	Description
14	0	Output angle value increases with clockwise rotation (viewing from above the magnet and device, with device mounted "on-axis" with the magnet).
14	1	Output angle value increases with counterclockwise rotation (viewing from above the magnet and device, with device mounted "on-axis" with the magnet).

FI [12] Filter Enable

Initializes SRAM field FI. This bit enables filtering the input angle signal before linearization. The type of filter is selected by the FILTNumx fields.

Bit	Value	Description
40	0	Disable angle filtering (Default).
12	1	Enable angle filtering.

ZeroOffset [11:0] Zero Offset Angle

Initializes SRAM field ZeroOffset. Sets the output angular offset to relocate the 0 degree reference point for the output angle. Applied after linearization in the processor, this value is subtracted from the computed angle to yield the output angle.

When programming this value directly to the EEPROM field, ZERO_ OFFSET, only the 12 MSBs (11:0) are available. Note that, when the device is initialized, SRAM bits 15:4 are populated from EEPROM, and SRAM bits 3:0 are zero-padded, but after initialization all 16 SRAM bits can be modified by the user (unsigned 16 bit).

Bit	Value	Description
11:0	0 to 0xFFFF	Enter angle offset in angle resolution units.

EEPROM Register Reference (continued)

Address: 0x307

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	CUST IIR_ERRVAL						IIR_FILTER_NUM1																	
Use*	В	В	В	В	В	В	В	В	S	В	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0

*B = binary whole number, F = fractional binary number, S = binary number sign (signed numbers only)

CUST[23:20] Customer Field One

IIR_ERRVAL[19:16] Filter Reset

Free form customer scratchpad.

Initializes SRAM field FfiltError.

IIR_FILTER_NUM1[15:0]

Filter Numerator One Initializes SRAM field FiltNum1.

Address: 0x308

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	C	RAT	E	DB	FP_	ADJ	MA	XID	IIR_FILTER_NUM2															
Use*	В	В	В	В	В	В	В	В	S	В	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	1	0

*B = binary whole number, F = fractional binary number, S = binary number sign (signed numbers only), X = not used

ORATE [23:21] Output Rate

Configures the refresh rate of the device output as Log 2(n) where 2^n is the quantity of samples to be averaged and n is the value entered. Increasing the quantity of samples to be averaged effectively increases the resolution (reduces the noise) of the device. After initialization, can be read and changed via the Extended Access command 0xFFD0.

Note: The nominal update rate can vary about $\pm 2\%$ from the specified values depending on the frequency of the internal oscillator, with additional drift due to temperature changes. The average update rate can vary $\pm 4 \ \mu s$ on any given sample, depending on direction and speed of rotation of the magnetic field.

Bit	Value	Description
	000	1 sample, 31.25 µs update
	001	2 samples, 62.5 µs update
	010	4 samples, 125 μs update
02.01	011	8 samples, 250 μs update
23.21	100	16 samples, 500 μs update
	101	32 samples, 1 ms update
	110	64 samples, 2 ms update
	111	128 samples, 4 ms update

DB [20] Disable SRAM BIST

Disables built-in self test (BIST) diagnostic algorithm to test SRAM during power-on. When enabled, occurs at every device boot-up initialization. Not accessible in SRAM. If enabled, this self-test takes approximately 100 µs to complete at initialization, delaying initial angle data.

Bit	Value	Description
20	0	Enable SRAM BIST (Default)
20	1	Disable SRAM BIST

Continued on the next page...

EEPROM Register Reference (continued)

Address: 0x308 (continued)

FP_ADJ [19:18]

Function Pulse Adjust

Only for Long SSENT (SENT_MODE = 7). Increases the lower threshold of what the sensor views as a valid F_OUTPUT pulse by 0-3 Ticks. Reduces the possible misinterpretation of F_OUTPUT pulses at sub-1.5 μ s Tick times. All sensors sharing a common bus should be configured with the same adjustment.

Bit	Value	Description
	00	No Change to F_OUTPUT pulse width. Minimum width = 9 Ticks.
10.19	01	Minimum width of F_OUTPUT increased by 1 Tick. Min = 10 Ticks.
19.10	10	Minimum width of F_OUTPUT increased by 2 Ticks. Min = 11 Ticks.
	11	Minimum width of F_OUTPUT increased by 3 Ticks. Min = 12 Ticks.

MAXID [17:16]

Maximum Sensor ID

Specifies the highest sensor ID number on the shared SENT bus. When using SSENT, this determines when the slot counter of each sensor resets to zero. All sensors sharing a common SENT bus should be configured with the same MAXID number. ID values are assigned by the logic state of the SA0 and SA1 pins.

Bit	Value	Description
	00	Highest ID value is 0. Sensor is not sharing the SENT line
47.40	01	Highest ID value is 1. Two sensors are sharing the SENT line
17.10	10	Highest ID value is 2. Three sensors are sharing the SENT line
	11	Highest ID value is 3. Four sensors are sharing the SENT line

IIR_FILTER_NUM2[15:0]

Filter Numerator Two

Initializes SRAM field FiltNum2.

EEPROM Register Reference (continued)

Address: 0x309

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	UI	DH	DC	SC		HAR_MAX				IIR_FILTER_NUM3														
Use*	В	В	В	В	В	В	В	В	s	В	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Default	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	1

*B = binary whole number, F = fractional binary number, S = binary number sign

UI [23]

User Initiated Diagnostic Enable

Enables the SENT interface to respond to F_DIAG/DiagStomp pulses to initiate the CVH Self-test.

Bit	Value	Description
	0	CVH Self-test cannot be initiated via SENT
23	1	CVH Self-test may be initiated via SENT interface through the receipt of a F_Diag or a DiagStomp pulse, depending on SENT configuration.

DH [22]

Disable CVH Self-Test at Power On

Disables built-in diagnostics to test the Hall-effect (CVH) elements. When enabled, test occurs at every device boot-up initialization. Not accessible in SRAM. If enabled, this self-test takes approximately 36 ms to complete at initialization, delaying initial angle data.

Due to the sensitivity of the self-test, test results are only valid at field levels equal to or less than 300 G and temperatures at or above 25° C.

Bit	Value	Description
22	0	Enable Hall elements self-test (Default).
22	1	Disable Hall elements self-test.

DC [21] Disable ROM Checksum

Disables built-in diagnostics to test the ROM. When enabled, occurs at every device boot-up initialization. Not accessible in SRAM. If enabled, this self-test takes approximately 4.5 ms to complete at initialization, delaying initial angle data.

Bit	Value	Description
24	0	Enable ROM checksum testing (Default).
	1	Disable ROM checksum testing.

SC [20]

Data Redundancy Check Enable (SPI)

Enables cyclic redundancy check (CRC) on data input through the SPI.

If HAR_MAX > 13, converted to use for initializing SRAM register 0x19 field HarLinPhase.

Bit	Value	Description
20	0	Ignore CRC on input. (Default)
20	1	Validate CRC on input

HAR_MAX[19:16]

Harmonic Linearization Maximum Offset

Initializes SRAM field HLinMax.

Note: In the EEPROM only, this field also controls the reassignment of EEPROM words 0x14 through 0x16 as harmonic coefficients.

IIR_FILTER_NUM3[15:0]

Filter Numerator Three Initializes SRAM field FiltNum3.

EEPROM Register Reference (continued)

Address: 0x30A

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	FR	LE	LM		MA	G_H	IGH								IIR_	FILTE	ER_D	EN2						
Use*	В	В	В	В	В	В	В	В	s	В	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Default	0	0	0	0	0	0	0	0	1	1	1	0	1	1	0	0	0	0	1	1	1	0	0	1

*B = binary whole number, F = fractional binary number, S = binary number sign (signed numbers only), X = not used

FR [23] Fault Recovery Mode

This bit determines device behavior when processor watchdog errors, due to a timeout or halt condition, are detected. If the hardware watchdog logic has detected that the processor is not operating correctly, the WP and WT bits in the XERR register in the primary serial interface are set to 1.

If this bit is set to 0, then the logic is configured to report the error, but not to take corrective active, meaning that angle data may no longer be correct, and the processor could be halted or be no longer processing commands. In this case, it is up to the host to take corrective response, such as resetting the part via the CTRL register.

If this bit is set to 1, then a watchdog error is reported in the XERR register, but in addition the A1335 attempts to perform the equivalent of a soft reset in order to resume angle processing. The EEPROM is not re-read, so if configuration data in the SRAM was changed as a result of whatever fault occurred, there is still the potential for the angle data to be wrong.

This setting may be read through the 0xFFF8 extended access command after initialization.

Bit	Value	Description
22	0	Take no remedial action when if a watchdog fault occurs. (Default)
23	1	Reset the processor if a watchdog fault occurs.

LE [22] Lock EEPROM

This bit determines if any EEPROM fields can be modified.

NOTE: When this bit is set in EEPROM, the EEPROM is locked and no further EEPROM writes are possible.

This setting may be read through the 0xFFF8 extended access command after initialization.

Bit	Value	Description
22	0	Writing or erasing EEPROM fields allowed (Default).
22	1	EEPROM fields locked.

LM [21]

Lock Processor

This bit determines if SRAM is accessible, and if certain extended operations are available. This setting can be reset.

This setting is available through the 0xFFF8 extended access command after initialization.

Bit	Value	Description
21	0	SRAM and extended commands available (Default).
21	1	SRAM and extended commands locked.

MAG_HIGH[20:16]

Magnetic Sense Limit High

Initializes SRAM field MagSenseHi. Sets the upper limit for the applied magnetic field level, in multiples of 40 gauss (0-1240 G). If the field amplitude level rises above the computed level, sets the error flag MH in the primary serial interface.

IIR_FILTER_DEN2[15:0]

Filter Denominator Two

Initializes SRAM field FiltDen2.

EEPROM Register Reference (continued)

Address: 0x30B

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	DM	GR	LI		MA	G_L	SW								IIR_	FILTE	ER_D	EN3						
Use*	В	В	В	В	В	В	В	В	S	В	F	F	F	F	F	F	F	F	F	F	F	F	F	F
Default	0	1	0	0	0	1	0	1	0	0	1	0	1	1	1	0	1	1	1	0	0	1	0	0

*B = binary whole number, F = fractional binary number, S = binary number sign (signed numbers only), X = not used

DM [23]

Disable Manchester

If "1" any Manchester input on the VCC line will be ignored. This takes effect after boot-up and self-test time. If a valid Manchester "Enter" command is recieved before this, the Manchester interface will be enabled.

Bit	Value	Description
23	0	Manchester interface is enabled. The part will monitor the Vcc line, looking for a valid Manchester "Enter" command.
	1	Manchester interface disabled. Part will ignore all Manchester commands on the Vcc line.

GR [22] Go Run

This bit determines device behavior at initialization. Not accessible from SRAM

Bit	Value	Description
22	0	Boot into Idle mode. (After initialization, to process angles, select Run mode by setting CDS field in Primary Serial Interface to 1.
	1	Boot into Run mode. Recommended for normal operation after all programming has been completed. (Default)

LI [21]

Lock Idle

This bit determines if Idle mode can be entered without unlocking the A1335. When set to 1, then after the A1335 enters Run mode, it can not be commanded to exit to Idle mode (which stops angle processing) without the Customer Keycode first being entered (via extended access command 0xFFFE). Not accessible from SRAM.

To program, EEPROM field 0x30A[LE] must be set to 0.

This setting is available through the 0xFFF8 extended access command after initialization.

Bit	Value	Description
01	0	Entering Customer ID not required. (Default)
21	1	Entering Customer ID required.

MAG_LOW [20:16]

Magnetic Sense Limit Low

Initializes SRAM field MagSenseLo. Sets the lower limit for the applied magnetic field level, in multiples of 20 gauss (0-620 G). If the field amplitude level falls below the computed level, sets the error flag ML in the primary serial interface.

IIR_FILTER_DEN3 [15:0]

Filter Denominator Three

Initializes SRAM field FiltDen3.

EEPROM Register Reference (continued)

Address: 0x30C through 0x313

(Segmented Linearization 0x06[SL] = 1, Harmonic Linearization 0x06[HL] = 1)

· •																_	-	'						
Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name (0x30C to 0x12)	SEG_LIN_COEFF_N [Even: 2 through 14]													:	SEG_	_LIN_	_COE	FF_N	1 [Od	d: 1 t	hroug	ıh 13]		
Name (0x13)					SEG	_LIN	_OFF	SET								S	SEG_	LIN_	COEI	FF_1	5			
Use*	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

*B = binary whole number

(Segmented Linearization 0x06[SL] = 0, Harmonic Linearization 0x06[HL] = 1)

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name (0x30C to 0x013)	o HARMONIC_PHASE_[1 through 8]													V		HAR	MON	IC_A	MPLI	ITUDI	E_[1	throu	gh 8]	
Use*	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В

*B = binary whole number

SEG_LIN_COEFF [23:12, 11:0]

Segmented Linearization Coefficients

Initialize SRAM fields SegLinCoeff if segmented linearization enabled (SL = 1).

SEG_LIN_OFFSET 0x13[23:12]

Segmented Linearization Offset

Initialize SRAM field SegLinOffset if segmented linearization enabled (SL = 1).

HARMONIC_PHASE [23:12]

Harmonic Linearization Phase Coefficients

Initialize SRAM fields HarLinPhase. For registers 0x30C through 0x013, optional use for harmonic linearization if segmented linearization disabled (SL = 0). For registers 0x314 through 0x316, optional use for harmonic linearization determined by HAR_MAX setting (eliminates default features).

ADV [11:10]

Harmonic Advance Count

Initialize SRAM fields Adv. For registers 0x30C through 0x013, optional use for harmonic linearization if segmented linearization disabled (SL = 0). For registers 0x314 through 0x316, optional use for harmonic linearization determined by HAR_MAX setting (eliminates default features).

HARMONIC_AMPLITUDE [9:0]

Harmonic Linearization Amplitude Coefficients

Initialize SRAM fields HarLinAmplitude. For registers 0x30C through 0x013, optional use for harmonic linearization if segmented linearization disabled (SL = 0). For registers 0x314 through 0x316, optional use for harmonic linearization determined by HAR_MAX setting (eliminates default features).

EEPROM Register Reference (continued)

Address: 0x314

(Segmented Linearization 0x06[SL] = 1, Harmonic Linearization 0x06[HL] = 1) HAR_MAX < 9

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GAIN_OFFSET																	GA	٨N					
Use*	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

*B = binary whole number

(Segmented Linearization 0x06[SL] = 0, Harmonic Linearization 0x06[HL] = 1) HAR_MAX > 8

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	Name HARMONIC_PHASE_9													ΟV			HAF	RMON	NIC_A	AMPL	ITUD)E_9		
Use*	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В

*B = binary whole number

GAIN_OFFSET [23:12]

Gain Offset

Initializes SRAM field GainOffset.

If HAR_MAX > 8, converted to use for initializing SRAM field [0x17] HarLinPhase.

Sets the offset value used to set the zero-reference point of the angle output value range (that is, to set the zero error point to which the Gain is applied), after Pre-Linearization Rotation (0x306[LR]), but before the Gain value is applied. Gain Offset is subtracted from the angle before multiplication by the Gain. Note that this operation is performed whether 0x306[SS] is set or not.

12-bit field representing 0-360 degrees.

GAIN [11:0]

Gain

Initializes SRAM field Gain.

If HAR_MAX > 8, converted to use for initializing SRAM register 0x17 fields Adv and HarLinAmp.

This sets the gain, to apply the full dynamic range of the processor for converting the input to an output angle. Applied gain is 1 plus the total value set in the Gain field. Therefore, the default value for Gain (all bits set to 0) is 1 (sets the dynamic range to 360°).

It is recommended that the Gain not be greater than 16 (entered as 15.00, or 1111 0000 0000), which expands a 22.5 degree range to a full 360 degree range ($360^{\circ} / [15+1] = 22.5^{\circ}$). Example, for <u>an</u> application angle stroke = 55° and a full scale = $360^{\circ}/1$. $360^{\circ}/55^{\circ} = 6.54$. Because the default Gain is offset by 1, subtract 1 and program a value of 5.54. The closest setting is 0101(.)1000 1011 (5.546875 decimal). Write the bit array to EEPROM as 0x58B.

HARMONIC_PHASE_9 [23:12]

Harmonic Linearization Phase Coefficient 12 See description at 0x30C.

ADV [11:10]

Harmonic Advance Count See description at 0x30C.

HARMONIC_AMPLITUDE_9 [9:0]

Harmonic Linearization Amplitude Coefficient 12 See description at 0x30C.

EEPROM Register Reference (continued)

Address: 0x315

(Segmented Linearization 0x06[SL] = 1, Harmonic Linearization 0x06[HL] = 1) HAR_MAX < 10

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					Μ	AX_A	ANGL	.E									Ν	1IN_A	NGL	E				
Use*	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

*B = binary whole number

(Segmented Linearization 0x06[SL] = 0, Harmonic Linearization 0x06[HL] = 1) HAR_MAX > 9

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				H/	ARM	ONIC	_PH/	ASE_	10				A	ΟV			HAR	MON	IC_A	MPLI	TUD	E_10		
Use*	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В

*B = binary whole number

MAX_ANGLE [23:12]

Maximum Input Angle

Initializes SRAM field MaxAngle.

Sets the maximum raw measured angle (after Pre-Linearization Rotation (0x306[LR]) and Gain Offset (0x314[GainOffset]), but before scaling by Gain (0x314[Gain]) used for short-stroke limit test, in angle resolution units (for conversion from angular degrees, see section Angle Resolution for EEPROM). If the angle exceeds the targeted dynamic range, sets the AH error flag in the primary serial interface and sets the angle value to the CLAMP_HIGH value (0x316[23:12]). When set to 0, Max angle check is disabled.

0x06[SS] must be set to 1 to enable this function. To disable angle boundary checking, set this value to 0, and MinAngle to 0.

If HAR_MAX > 9, converted to use for initializing SRAM field [0x15] HarLinPhase.

HARMONIC_PHASE_10 [23:12]

Harmonic Linearization Phase Coefficient 10

See description at 0x30C.

ADV [11:10] Harmonic Advance Count See description at 0x30C.

HARMONIC_AMPLITUDE_10 [9:0]

Harmonic Linearization Amplitude Coefficient 10 See description at 0x30C.

MIN_ANGLE [11:0]

Minimum Input Angle

Initializes SRAM field MinAngle.

Sets the minimum raw measured angle (after Pre-Linearization Rotation (0x306[LR]) and Gain Offset (0x314[GainOffset]), but before scaling by Gain (0x314[Gain]) used for short-stroke limit test, in angle resolution units (for conversion from angular degrees, see section Angle Resolution for EEPROM). Setting this field to 0 will effectively disable this feature. This allows debugging and diagnostics of a possible broken sensor assembly. Used as a diagnostic point if the angle exceeds the targeted dynamic range, sets the AL error flag in the Primary Serial Interface and sets the angle value to the CLAMP_LOW value (0x316[11:0]. Initialized by EEPROM field MIN_ANGLE.

0x06[SS] must be set to 1 to enable this function. To disable angle boundary checking, set this value to 0, and MaxAngle to 0.

If HAR_MAX > 9, converted to use for initializing SRAM register 0x15 fields Adv and HarLinAmp.

EEPROM Register Reference (continued)

Address: 0x316

(Segmented Linearization 0x06[SL] = 1, Harmonic Linearization 0x06[HL] = 1) HAR_MAX < 11

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					Cl	AMF	P_HIG	θH									С	LAMF	P_LO	W				
Use*	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Default	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0

*B = binary whole number

(Segmented Linearization 0x06[SL] = 0, Harmonic Linearization 0x06[HL] = 1) HAR_MAX > 10

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				H	ARM	ONIC	_PH/	ASE_	11				A	V			HAR	MON	IC_A	MPLI	TUD	E_11		
Use*	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	в	В	В

*B = binary whole number

CLAMP_HIGH [23:12]

Maximum Output Angle

Initializes SRAM field ClampHi.

Sets the maximum allowed angle output value for a short-stroke application, after all other angle processing steps are complete, in angle resolution units. If the processed angle exceeds ClampHi, then the output angle will be clamped at ClampHI. This is used with ClampLo to limit the output dynamic range (set by GAIN_OFFSET). CLAMP_HIGH × 360° / 4096 sets the clamping angle; for example, 3,891 × 360° / 4096 ≈ 342°. 0x06[SS] must be set to 1 to enable this function. To disable angle clamp checking, set CLAMP_HIGH to 4096, and CLAMP_LOW to 0.

If HAR_MAX > 10, converted to use for initializing SRAM field [0x16] HarLinPhase.

CLAMP_LOW [11:0]

Minimum Output Angle

Initializes SRAM field ClampLo.

Sets the minimum allowed angle output value for a short-stroke application, after all other angle processing steps are complete, in angle resolution units. If the processed angle is less than ClampLo, then the output angle will be clamped at ClampLo. This is used with ClampHi to limit the output dynamic range (set by GAIN_OFFSET). CLAMP_LOW $\times 360^{\circ}$ /4096 sets the clamping angle; for example, $600 \times 360^{\circ}$ / 4096 \approx 52.7°. 0x06[SS] must be set to 1 to enable this function. To disable angle clamp checking, set CLMAP_LOW to 0, and CLAMP_HIGH to 4096.

If HAR_MAX > 10, converted to use for initializing SRAM register 0x16 fields Adv and HarLinAmp.

HARMONIC_PHASE_11 [23:12]

Harmonic Linearization Phase Coefficient 11 See description at 0x30C.

ADV [11:10]

Harmonic Advance Count See description at 0x30C.

HARMONIC_AMPLITUDE_11 [9:0]

Harmonic Linearization Amplitude Coefficient 11 See description at 0x30C.

EEPROM Register Reference (continued)

Address: 0x317

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					C	UST	OME	R					-			SEI	NT_T	ICK			SM	SEN	T_M	ODE
Use*	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1

*B = binary whole number

Customer [23:12]

Customer Field 2

Free form customer scratchpad.

SENT_TICK[10:4]

SENT Tick Time

Sets the SENT Tick time, in multiples of a 16 MHz clock period (0.0625 $\mu s).$ Forced to a minimum of one clock period.

Bit	Value	Description
	000 0000	0.0625 µs Tick time*
	000 0001	0.0625 µs Tick time*
	000 0010	0.125 µs Tick time*
10.4	000 0100	0.25 µs Tick time*
10.4	000 1000	0.5 μs Tick time
	001 0000	1 µs Tick time
	011 0000	3 µs Tick time
	111 11111	7.9375 µs Tick time

* Tick times shorter then 0.5 μs are not guaranteed

SM [3] Slot Marking

When in SSENT mode, following an addressing pulse sensor will output a high signal proportional to sensor address. See SENT description for additional details.

Bit	Value	Description
2	0	No Slot Marking pulses.
3	1	Slot Marking enabled.

SENT_MODE[2:0]

SENT Mode

Selects between the various SENT operating modes. See SENT description for additional details.

Bit	Value	Description
	000	SENT output disabled.
	001	Streaming SENT. No Pause pulse between frames.
	010	Streaming SENT. Pause pulse inserted to synchronize frame with angle update
2.0	011	Triggered SENT (TSENT). Data latched near end of SCN.
2.0	100	Triggered SENT (TSENT). Data latched on falling edge of trigger.
	101	Addressable SENT (ASENT).
	110	Sequential SENT (SSENT).
	111	Long SSENT.

A1335

Precision Hall-Effect Angle Sensor IC with I²C, SPI, and SENT Interface

EEPROM Register Reference (continued)

Address: 0x318

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	SS	ES	AW	TR	SU	EU	WP	WT	RC	XE	ME	ST	R	ХО	IER	CRC	NR	AT	AH	AL	OV	UV	MH	ML
Use*	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

*B = binary whole number

EMSK [23:0] Error Mask

Set individual bits to 1 to mask out (prevent setting) the corresponding error flag (0x36:0x37] or the general error flag bits in the Primary Serial Interface. Not accessible in SRAM.

Bit	Description
23	Set to 1 to mask SS error (0x36[11]).
22	Set to 1 to mask ES error (0x36[10]).
21	Set to 1 to mask AW error (0x36[9]).
20	Set to 1 to mask TR error (0x36[8]).
19	Set to 1 to mask SU error (0x36[7]).
18	Set to 1 to mask EU error (0x36[6]).
17	Set to 1 to mask WP error (0x36[5]).
16	Set to 1 to mask WT error (0x36[4]).
15	Set to 1 to mask RC error (0x36[3]).
14	Set to 1 to mask XE error (0x36[2]).
13	Set to 1 to mask ME error (0x36[1]).
12	Set to 1 to mask ST error (0x36[0]).
11	Reserved. Always set this value to 0 when writing this EEPROM address.
10	Set to 1 to mask XOV error (0x34[10]).
9	Set to 1 to mask IE error (0x34[9]).
8	Set to 1 to mask CRC error (0x34[8]).
7	Set to 1 to mask NR error (0x34[7]).

Bit	Description
6	Set to 1 to mask AT error (0x34[6]).
5	Set to 1 to mask AH error (0x34[5]).
4	Set to 1 to mask AL error (0x34[4]).
3	Set to 1 to mask OV error (0x34[3]).
2	Set to 1 to mask UV error (0x34[2]).
1	Set to 1 to mask MH error (0x34[1]).
0	Set to 1 to mask ML error (0x34[0]).

EEPROM Register Reference (continued)

Address: 0x319

Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IS		SDR\	/	PO	DAT	A_M	DDE	CIS	SCI	N_MC	DE	NS	ZS	DA	FA	XS	12	C_SL	AVE	_ADE	R	DAW	DR
Use*	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Default	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	0	0

*B = binary whole number

IS [23]

Idle Sync

SSENT only. When 1, an idle SENT bus for longer than 511 Ticks will reset the slot counter. See SENT description for additional details.

Bit	Value	Description
	0	No idle sync.
23	1	Slot counter resets when SENT bus is idle for greater than 511 Ticks. (SSENT only).

SDRV [22:20]

SENT Driver

Sets the ramp rate on the gate of the SENT output driver, thereby adjusting the output slew rate.

Dit	Value	Fall Time (80% to 20% Typical Values) (µs)							
DIL	value	C _{LOAD} = 100 pF	C _{LOAD} = 1 nF						
	000	0.031	0.102						
	001	0.075	0.105						
	010	0.130	0.226						
22.20	011	0.180	0.296						
22.20	100	0.460	0.622						
	101	0.930	1.100						
	110	1.900	1.900						
	111	2.900	2.700						

PO [19]

POR_OFFLINE

Sensor stays offline after power on reset (SSENT only) See SENT description for additional details.

Bit	Value	Description
	0	After power-on-reset sensor will go online with a slot counter of 0.
19	1	Sensor stays offline following a power-on-reset. Sensor goes online following a slot counter synchronization via and F_SYNC pulse or IDLE_ SYNC.

DATA_MODE [18:16]

SENT Data Nibble Format

Selects the quantity and contents of the Data nibbles within the SENT message frame. See SENT description for additional details.

Bit	Value	Description
	000	Nibbles 1,2,3: Angle data (Nibbles 4,5,6 skipped).
	001	Nibbles 1,2,3: Angle data; Nibbles 4,5: Eight bit alive counter; Nibble 6: 1's complement of Nibble 1.
	010	Nibbles 1,2,3: Angle data; Nibbles 4,5,6: Status bits, alternates between the two 12-bit words.
	011	Nibbles 1,2,3: Angle data; Nibble 4: Message ID (see Short Serial Output); Nibbles 5,6: Rotating Extended data (see Short Serial Output).
18:16	100	Nibbles 1,2,3: Angle data; Nibble 4: Self-test and ID.
	101	Nibbles 1,2,3: Angle data; Nibble 4: Self-test and ID.
	110	Nibbles 1,2,3: Angle data ; Nibbles 4,5: Status bits. Alternates between four 8-bit frames; Nibble 6: Self-test and ID.
	111	Nibbles 1,2,3: Angle data; Nibble 4: Message ID [3:1] and Upper/Lower (0/1) indicated via bit 0. (see Short Serial Output); Nibble 5: Rotating Extended data, 1 nibble at a time (see Short Serial Output); Nibble 5: Self-test and ID.

CIS [15]

CRC includes SCN

When using SENT, this bit allows the SENT frame CRC to cover the contents of the Status and Communication Nibble.

Bit	Value	Description
	0	SCN contents not included in the SENT frame CRC.
15	1	SCN contents covered via the CRC nibble (does not conform with the J2716 SENT Standard).

Continued on the next page

EEPROM Register Reference (continued)

Address: 0x319 (continued)

SCN_MODE [14:12]

Status and Communication Nibble

The Status and Communication Nibble (SCN) provides diagnostic information along with other status and environmental data. See SENT description for additional details.

SCN_ MODE	Bit 3	Bit 2	Bit 1	Bit 0	
000	0	0	Soft	Hard	
001	SerialSync	SerialData	Soft	Hard	
010	ID[1]	ID[0]	Soft	Hard	
011	0	0	0	Soft+Hard	
100	0	0	ID[1]	ID[0]	
101	SerialSync	SerialData	ID[1]	ID[0]	
110	Soft	Hard	ID[1]	ID[0]	
111	SerialSync	SerialData	0	Soft+Hard	

NS [11]

No Sample

Sensor will not sample and hold angle data on receipt of a F_SAMPLE pulse. See SENT description for additional details.

Bit	Value	Description
11	0	On receipt of an F_SAMPLE pulse, sensor samples and holds angle data.
	1	Sensor does not sample and hold data on receipt of an F_SAMPLE pulse.

ZS [10]

Zero Sampling (SSENT only)

Sensor samples and holds data at Slot 0. See SENT description for additional details.

Bit	Value	Description
	0	No special action at slot = 0.
10	1	Sensor performs a sample-and-hold when its slot counter resets to 0.

DA [9]

Diagnostic Addressing

Allows the F_DIAG pulse to be treated as an addressing pulse. See SENT description for additional details.

Bit	Value	Description
0	0	F_DIAG is treated as a broadcast pulse. Sensor will enter diagnostic mode on any F_DIAG pulse (if UI = 1).
9	1	F_DIAG is treated as an addressing pulse. Sensor will only enter diagnostic mode if properly addressed.

FA [8]

F_SAMPLE addressing

Sensor treats the F_SAMPLE pulse as an addressing pulse. See SENT description for additional details.

Bit	Value	Description
	0	F_SAMPLE is treated as a broadcast pulse. Sensor will sample and hold angle data on any F_SAMPLEpulse (unless NS = 1).
8	1	F_SAMPLE is treated as an addressing pulse. Sensor will only sample and hold angle data on an F_SAMPLE pulse if properly addressed (unless NS = 1).

XS [7] Extended I²C Slave Address

Enables direct access to raw angle, reducing access time. Not accessible in SRAM.

Bit	Value	Description							
	0	Standard addressing (Default).							
7	1	Access angle data directly by inverting bit 2 of slave (device) address.							

Continued on the next page

EEPROM Register Reference (continued)

Address: 0x319 (continued)

I2C_SLAVE_ADR [6:2]

I²C Slave Address

Sets the 5 MSB of the I2C slave address. 2 LSB of address set by the logic state of the SA0 and SA1 pins.

Bit	Value	Description
6:2	0 to 0x1F	Set slave address of device.

DAW [1] I²C Address Mode

Defines the angle data wrapping behavior of the A1335.

Bit	Value	Description
1	0	Automatic wrapping of angle data (Default).
	1	No Automatic wrapping of angle data.

DR [0]

Data Redundancy Check Enable (I²C)

Enables conversion of I^2C output for enhanced verification. Output is byte pairs in which the first byte is data and the second byte is the inverse of the data.

Bit	Value	Description
0	0	No redundancy bytes output. (Default)
	1	Alternating data and inverted bytes.

APPENDIX A: SENT OUTPUT DESCRIPTION

SENT Output Mode

The SENT output converts the measured magnetic field angle to a binary value mapped to the Full-Scale Output (FSO) range of 0 to 4095, shown in Figure 18. This data is inserted into a binary pulse message, referred to as a frame, that conforms to the SENT data transmission specification (SAEJ2716 JAN2010).

The SENT frame can be configured by setting the following parameters in EEPROM (shown in Table 19):

- SENT_MODE
- SENT_DRIVER
- DATA_MODE
- SCN_MODE
- SENT_ENABLE
- SENT_TICK

Figure 18: Angle is Represented as a 12-bit Digital Value

Table	19:	Main	SENT	Parameter	Location*
-------	-----	------	------	-----------	-----------

Address	Bits	Parameter Name	Description					
0x317	10:4	SENT_TICK	Sets Tick rate coefficient					
	2:0	SENT_MODE	Sets frame update rate, enables TSENT, SSENT, ASENT					
0x319	22:20	SENT_DRIVER	SENT pin drive strength					
	18:16	DATA_MODE	Set data nibble format					
	14:12	SCN_MODE	Configure Status and Communication nibble contents					
	15	CIS	CRC nibble includes the Status and Communication Nibble data					

* For information on SSENT/ASENT configurations bits, see specific SSENT/ASENT section

MESSAGE STRUCTURE

Data within a SENT message frame is represented as a series of nibbles, with the following characteristics:

- Each nibble is an ordered pair of a low-voltage interval followed by a high-voltage interval
- The low-voltage interval acts as the delimiting state which acts as a boundary between each nibble. The length of this low-voltage interval is fixed at 5 ticks.
- The high-voltage interval performs the job of the information state and is variable in duration in order to contain the data payload of the nibble
- The slew rate of the falling edge may be adjusted using the SENT_DRIVER parameter.

Figure 19: General Value Formation for SENT

0000 (left), 1111 (right)

The duration of a nibble is denominated in ticks. The period of a tick is set by the SENT_TICK parameter. The duration of the nibble is the sum of the low-voltage interval plus the high-voltage interval.

The parts of a SENT message are arranged in the following required sequence (see Figure 20):

- **1. Synchronization and Calibration:** Flags the start of the SENT message.
- 2. Status and Communication Nibble: Provides A1335 status and the optional serial data determined by the setting of the SENT_SERIAL parameter.
- 3. Data: Angle information and optional data.
- 4. CRC: Error checking.
- 5. Pause Pulse (optional): Fill pulse between SENT message frames.

Table 20: Nibble Composition and Value

Q	uantity of Tick	Pinon	Desimal	
Low- Voltage Interval	High- Voltage Interval	Total	(4-bit) Value	Equivalent Value
5	7	12	0000	0
5	8	13	0001	1
5	9	14	0002	2
•	• •	•	• •	•
5	21	26	1110	14
5	22	27	1111	15

Synchronization and Calibration Pulse

Figure 21: Synchronization and Calibration Pulse within the SENT Message Frame

The Synchronization and Calibration pulse is 56 ticks wide, measured from falling-edge to falling edge, and delineates the start of a new message frame. The host microcontroller uses this pulse to rescale the subsequent nibble values to correct for clock variation between the controller and the sensor.

Status and Communication Nibble

Figure 22: Status and Communication Nibble within the SENT Message Frame

The Status and Communication Nibble (SCN) provides diagnostic information along with other status and environmental data. Nibble contents are controlled via the SCN_MODE field within EEPROM. By default, contents of the SCN are not included in the 4 bit CRC at the end of each SENT frame. The CIS bit within EEPROM enables CRC coverage of the SCN contents. It should be noted that this option is not specified in the J2716 SENT standard. With the CIS bit set the CRC is no longer compliant with that outlined in the SENT specification.

The SCN has three different types of bit values which may be present, depending on the SCN_MODE setting. These are:

a) Soft/Hard Error: Overall condition of the A1335, separated into Soft and Hard error flags. Detailed error information can be obtained via the expanded data nibbles, set via DATA_MODE, or through the slow serial communication.

Hard Error Flag:

- Latched indefinitely if any of the following occur:
 - U Watchdog Timeout
 - □ EEPROM hard error (multi-bit fault)
 - □ SRAM hard error
 - \square Self-test error
 - $\hfill\square$ Any reset other than a POR or Hard/Soft reset
- Temporarily sets but clears after the following conditions pass:
 - □ Processor in "Idle Mode" (not generating new angle readings).
 - \square POR/Hard/Soft Reset

Soft Error Flag:

- Latched temporarily, clears on next SENT frame unless condition is still asserted.
 - □ Any unmasked errors asserted
 - □ Processor in "Idle Mode"
- b) ID data: Die ID bits set via SA0 and SA1 pins.
- ID[0]: Value set by the logic level of the SA0 pin.
- ID[1]: Value set by the logic level of the SA1 pin.
- c) Serial Data: Two bits, consisting of the SerialSync and SerialData bits. Together they form the Short Serial Message (per J2716 Section 5.2.4.1).
- SerialSync: Indicates the start of a 16-bit serial message
- SerialData: Serial data, transmitted one bit at a time, MSB first.

Table 21: SCN Bit Contents

SCN_ MODE	Bit 3	Bit 2	Bit 1	Bit 0
000	0	0	Soft	Hard
001	SerialSync	SerialData	Soft	Hard
010	ID[1]	ID[0]	Soft	Hard
011	0	0	0	Soft+Hard
100	0	0	ID[1]	ID[0]
101	SerialSync	SerialData	ID[1]	ID[0]
110	Soft	Hard	ID[1]	ID[0]
111	SerialSync	SerialData	0	Soft+Hard

Short Serial Message Format

The SENT specification allows additional data transfer via specific bits within the SCN. This data stream is also referred to as the "Slow Channel".

The A1335 implements "Short Serial Message Format" as described in paragraph 5.2.4.1 of the SAE-J2716 specification. A 16-bit data packet is transmitted one bit at a time over consecutive SENT message frames, starting with the MSB. The beginning of each 16-bit packet is indicated by a "1" in the SerialSync bit. The message data is transmitted bit-by-bit via the SerialData bit. The 16-bit message packet is separated into 3 different fields:

a) Message ID (4 bits):

Four leading bits of the serial data packet, used to identify data contents. Data rotates through the 16 message IDs as shown in Table 16. The Message ID may be considered the 4 LSB of a 12-bit alive counter that increments every 16 SENT frames

- b) Message Data (8 bits): Eight bits of data.
- c) CRC (4 bits):

CRC checksum, used to validate the Message ID and Data. Same CRC algorithm as that used for the SENT message frame.

Sixteen separate SENT frames are needed to construct a complete 16-bit serial message. To transmit all 8 unique serial data messages (Message ID 0-7) a total of 128 SENT transmission are necessary. 256 SENT transmissions are required for a complete rotation of the 16 message IDs.

Table 22: Short Serial Message Format in SENT Status andCommunication Nibble

SNC Bit		Nibble #														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SerialSync	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SerialData	M	Message ID				Data					CRC					

Table 23: Serial Output Data

Message ID (4 bits)	Data (8 bits)					
0 (8)	8-bit Alive counter (increments by one, every 0-15 rotation of the Message ID field))					
1 (9)	Temperature in degrees Celsius, offset by +64 (subtract 64 to get measured temperature)					
2(10)	Magnetic field reading in gauss, divided by 8 (multiply by 8 to obtain gauss rating)					
3 (11)	STATUS, bits [23:16] See Table 19.					
4 (12)	STATUS, bits [15:8] See Table 19.					
5 (13)	STATUS, bits [7:0] See Table 19.					
6 (14)	First byte of the customer programmable field ¹					
7 (15)	7 (15) Second byte of customer programmable field ²					
¹ The most significant 4 bits correspond to EEPROM register 0x307, bits [23:20]. The least significant 4 bits correspond to EEPROM register 0x317, bits [23:20]. ² Corresponds to EEPROM register 0x317, bits [19:12].						

SENT Data Nibbles

The 12-bit angle value is embedded in the first three data nibbles of every SENT frame and transmitted MSB first. Additional information may be transmitted by extending the number of data nibbles, up to 6. The contents and number of data nibbles in every SENT frame is configured using the DATA_MODE field in EEPROM.

Figure 23: SENT Data Nibbles within the SENT Message Frame

SENT Data Mode Options

Self-Test and ID Nibble

The Self-Test and ID (ST&ID) nibble is optional. It is included as one of the extended nibbles when using DATA_MODEs 4-7. This nibble consists of three data bits (MSB is always 0), shown below:

Figure 24: ST & ID Nibble

The ST bit, indicates a failure of one of the three internal self-tests (CVH self-test, ROM BIST, RAM BIST). If set, this indicates significant failure of the sensor, and a reset should be initiated.

ID[0] and ID[1] provide the sensor ID value as determined via the logic values of the SA0 and SA1 pins.

This nibble is particularly useful when sharing SENT lines and using DATA_MODE 4 or 5, as it allows the Self-Test diagnostic results and corresponding sensor ID to be quickly determined without a significant latency penalty (only one nibble to the SENT frame).

SENT Status Bit Description

The A1335's extensive status and error flags may be read at any time via I²C or SPI protocols, or by entering Manchester Communication Mode. To facilitate error/status flag reporting by way of the unidirectional SENT protocol, a selection of these flags are communicated via extra data nibbles when using DATA_MODEs 2 or 6. These status flags are also transmitted via the slow serial protocol through the SCN.

The flags are 0 if the condition is clear and 1 if the condition is true. For transient conditions, the flag will clear after the bit is presented on the SENT output.

Bit	Status Flag Name	Symbol	Definition
23	Reserved	R	Always 0
22	Reset other than POR	SF21	
21	SRAM Hard Error	SF20	Uncorrectable SRAM fault
20	EEPROM Hard Error	SF19	Uncorrectable EEPROM fault
19	PC Watchdog	SF18	Microprocessor halted
18	Watchdog timer	SF17	Microprocessor locked up
17	Self-Test Error	SF16	Asserts if any one of the three internal self-tests fails
16	Angle Timeout	SF15	No angle updated within expected time. May occur with no magnet present.
15	Temperature Out of Range	SF14	
14	Idle Mode	SF13	Microprocessor is not updating angle content (in idle or booting/self-test).
13	POR	SF12	Power-on reset
12	Reserved	R	Always (1) when using DATA_MODE 2; indicates upper 12 bits. Always (0) during Serial transmission or when using DATA_MODE 6.
11	SRAM Soft Error	SF11	Correctable SRAM error
10	EEPROM Softerror	SF10	Correctable EEPROM error
9	Interface Error	SF09	SPI, Manchester checksum/bit detect error, SENT contention/slot error
8	Access Error	SF08	Extended error, memory access error, extended overflow
7	Angle Warning	SF07	IIR filter reset, angle slippage (computation too long for ORATE setting), gain overflow (short stroke)
6	Angle High	SF06	Short stroke only
5	Angle Low	SF05	Short stroke only
4	Magnetic Field High	SF04	
3	Magnetic Field Low	SF03	Default of 100 G
2	Overvoltage	SF02	
1	Undervoltage	SF01	
0	Reserved	R	Always 0. Indicates lower 12 bits.

Table 24: SENT Status Flag Definitions

Status Flag Locations for SENT DATA_MODE 2 (over 2 SENT frames)

Nibble1	Nibble2	Nibble3	Nibble4				Nibble5				Nibble6			
A[11:8]	A[7:4]	A[3:0]	SF11	SF10	SF09	SF08	SF07	SF06	SF05	SF04	SF03	SF02	SF01	R (0)

Nibble1	Nibble2	Nibble3	Nibble4			Nibble5				Nibble6				
A[11:8]	A[7:4]	A[3:0]	R (0)	SF21	SF20	SF19	SF18	SF17	SF16	SF15	SF14	SF13	SF12	R (1)

Status Flag Locations for SENT DATA_MODE 6 (over 4 SENT frames)

Nibble1	Nibble2	Nibble3	Nibble4			Nibble5				Nibble6	
A[11:8]	A[7:4]	A[3:0]	0	0	SF05	SF04	SF03	SF02	SF01	R (0)	ST & ID
Nibble1	Nibble2	Nibble3		Nib	ble4			Nibb	ole5		Nibble6
Nibble1 A[11:8]	Nibble2 A[7:4]	Nibble3 A[3:0]	0	Nib 1	ble4 SF11	SF10	SF09	Nibb SF08	ble5 SF07	SF06	Nibble6 ST & ID

Nibble1	Nibble2	Nibble3	Nibble4				Nibble5				Nibble6
A[11:8]	A[7:4]	A[3:0]	1	0	SF16	SF15	SF14	SF13	SF12	R (0)	ST & ID

Nibble1	Nibble2	Nibble3	Nibble4					Nibb	ole5		Nibble6
A[11:8]	A[7:4]	A[3:0]	1	1	R (0)	SF21	SF20	SF19	SF18	SF17	ST & ID

SENT CRC Nibble

The CRC nibble is a 4-bit error checking code, implemented per the SAE-J2716 SENT "recommended" specification.

The CRC is calculated using the polynomial $x^4 + x^3 + x^2 + 1$, initialized to 0101.

By default, the checksum covers only the contents of the data nibbles (3-6 nibbles). By setting the CIS bit within EEPROM, the contents of the SCN are included within the CRC nibble.

Figure 25: CRC Nibble within the SENT Message Frame

SENT Pause Pulse (Optional)

The Pause Pulse is an optional addition to the SENT message frame, transmitted following the CRC nibble. It acts to "fill-in" the frame until the beginning of the next SENT transmission. The pulse may behave in one of two ways, based on the SENT_MODE setting.

With SENT_MODE set to 2, a Pause Pulse will be inserted until new angle data is available. The inserted Pause Pulse is a minimum of 12 Ticks in length. If a pause longer than 768 Ticks is required, the pulse will restart requiring a minimum of 12 more Ticks.

For SENT_MODE values greater than 3-7, the sensor operates in either triggered or addressable/sequential SENT mode. In these modes the sensor outputs a SENT message frame in response to host action (either a trigger or a function pulse). When not responding to the host the sensor will output a Pause Pulse of indefinite length (i.e. remains high until host a host request).

Figure 26: Pause Pulse within the SENT Message Frame

Figure 27: SENT Pause Pulse

SENT OUTPUT MODE

The timing and method of SENT transmission may be configured using the SENT_MODE field within EEPROM. The method of SENT transmission falls within the following three categories:

1. Free Running SENT

Angle information is automatically placed on the SENT line with no prompting from the host. Depending on settings, the SENT message frames may be transmitted back-to-back, or synchronized with each update of the angle value.

2. Triggered SENT (TSENT)

A SENT message frame occurs only when initiated by the host. The A1335 sensor will output a continuous Pause pulse, during this the host triggers a SENT frame by pulling the SENT line low for a minimum of $T_{\text{Trig}(\text{MIN})}$. Once released the sensor responds with a SENT message frame

3. Shared SENT

Two distinct formats. Sequential SENT (SSENT) and Addressable SENT (ASENT). Allow sharing a single SENT line amongst four compatible devices

SENT_MODE	Visual	Description
000 ₂ (0)	_	SENT disabled.
001 ₂ (1)	SENT VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	Streaming output with variable message duration and no pause pulse. Angle data is sampled near the end of the Status and Communication nibble. Maximum age at time of sampling is $2^{ORATE} \times 32 \ \mu s$. Depending on Tick time and ORATE setting, same data may be transmitted multiple times. This mode provides the quickest data delivery rate
010 ₂ (2)	SENT message 1 SENT message 2	SENT message frames are synchronized with the device internal update rate. Pause pulse is inserted until fresh data becomes available. Angle data is sampled between 1 to 2 Tick times of the Synchronization pulse. Pause pulse varies in length between 12 to $2^{\text{ORATE}} \times 32 \mu\text{s}$ (Pulse will restart after 768 ticks).
011 ₂ (3)	Controller pulls OUT low	TSENT SCN sampling: Controller initiates a SENT transmission by pulling the line low, during a Pause Pulse. When the controller releases the output, after a delay of t_{dSENT} the SENT message begins. Angle data is latched at the end of the SCN. Data age may be up to $2^{ORATE} \times 32$ µs when latched. This option is useful when the controller requires a prompt with minimum "age" of the angle data.
100 ₂ (4)	Controller pulls OUT low;	TSENT Falling edge sampling: Similar to SENT_MODE = 3, except angle data is latched once the output line is pulled low. Useful when multiple ICs are connected to a single controller. Allows synchronous sampled data to be retrieved one device at a time, by releasing the trigger for each individual sensor.
101 ₂ (5)	_	Addressable SENT (ASENT). See Shared SENT section
110 ₂ (6)	_	Sequential SENT (SSENT). See Shared SENT Section.
111 ₂ (7)	_	Long Sequential SENT. See Shared SENT Section.

SHARED SENT PROTOCOL

Addressable SENT (ASENT) and Sequential SENT (SSENT) are extensions of the Allegro Triggered SENT (TSENT) protocol. ASENT and SSENT allow multiple Allegro sensors with SENT output capability to co-exist on a single shared SENT bus. The Host (ECU) is able to select one sensor at a time, addressing that sensor to respond with a SENT output packet, and thus poll each sensor on the bus over some period of time.

ASENT and SSENT, like Triggered SENT, require an open-drain system configuration, in which any sensor, or the Host, can pull the SENT line low. The SENT line is pulled high by an external resistor to a known VCC. A high level is attainable on the bus only when no device is actively pulling the line low.

In ASENT and SSENT, each sensor on the bus is assigned a unique SensorID number between 0 and 3, allowing up to 4 Sensors to co-exist on the bus. This SensorID number is assigned by the logic state of the SA0 and SA1 pins.

Function Pulses

Figure 28: Shared SENT Bus Example

This section describes the different function pulses that are referenced later during the ASENT and SSENT section.

The host communicates to a sensor or sensors via different Function Pulses, which are equivalent in nature to a TSENT trigger pulse, but with defined widths. A Function Pulse is placed on the SENT bus by the Host pulling the SENT line low for a defined number of Ticks greater than a normal SENT pulse low period. The duration of the low time is measured by the Sensors and interpreted as a designated Function.

Functions that are acted upon by all sensors simultaneously are

Figure 29: Function Pulse (Output by Host)

designated Broadcast Pulses. Functions that are acted upon by only one sensor are designated Addressing Pulses and are associated with a target sensor ID. A Function Pulse may be defined as both a Broadcast and an Addressing pulse. For instance, all sensors will sample and hold data, but only one will transmit a SENT packet.

A sensor that does not support a specific function will not respond to the Function Pulse.

Function Pulses must be greater in duration than the SENT pulse low time (5 Ticks on the A1335) to not be mistaken as a part of a normal SENT transmission

The duration of Function Pulses are defined in SENT Ticks in order to scale with the SENT frame itself. Min and Max pulse durations are set such that they satisfy electrical and timing characteristics.

The various Function Pulses with their expected Tick ranges are shown in Table 25 through Table 27.

Table 25: ASENT Functional Pulses

Function	Туре	Related Options	Min Tick	Nom Tick	Max Tick	Description
F_OUTPUT	Addressing/ Broadcast	NO_SAMPLE	15	17	19	Addressed Sensor responds with SENT frame, containing either held data (from F_SAMPLE) or current data.
F_SAMPLE	Addressing/ Broadcast	NO_FSAMPLE SAMPLE_ADR	31	35	39	Sensors sample and hold their magnetic data, unless NO_FSAMPLE=1. If SAMPLE_ADR=1, this is also an AddressingPulse, and addressed Sensor responds with SENT frame.
F_DIAG	Addressing/ Broadcast	DIAG_ADR DIAG_ENABLE	56	63	70	Sensor(s) enter Diagnostics as described in User- Initiated Diagnostic Support.

Table 26: SSENT Functional Pulses. SENT_MODE = 6

Function	Туре	Related Options	Min Tick	Nom Tick	Max Tick	Description
F_OUTPUT	Addressing/ Broadcast	NO_SAMPLE ZERO_SAMPLE	15	17	19	Addressed Sensor responds with SENT frame, containing either held data (from Slot 0 sampling or F_SAMPLE) or current data. If ZERO_SAMPLING=1 and Slot=0, Sensors will sample-and-hold their magnetic data.
F_SAMPLE	Addressing/ Broadcast	NO_FSAMPLE SAMPLE_ADR	31	35	39	Sensors sample and hold their magnetic data, unless NO_FSAMPLE=1. If SAMPLE_ADR=1, this is also an Addressing Pulse, and addressed Sensor responds with SENT frame.
F_DIAG	Addressing/ Broadcast	DIAG_ADR DIAG_ENABLE	56	63	70	Sensor(s) enter Diagnostics as described in User- Initiated Diagnostic Support.
F_SYNC	Broadcast		93	104	115	All sensors synchronize their Slot Counters such that the next Slot is for Sensor ID 0.

Table 27: Long SSENT Functional Pulses. SENT_MODE = 7

Function	Туре	Related Options	Min Tick	Nom Tick	Max Tick	Description
F_OUTPUT	Addressing/ Broadcast	NO_SAMPLE ZERO_SAMPLE	9	Per micro controller spec	81	Addressed Sensor responds with SENT frame, containing either held data (from Slot 0 sampling) or current data. If ZERO_SAMPLING=1 and Slot=0, Sensors will sample-and-hold their magnetic data.
F_SYNC	Broadcast		105	140	171	All sensors synchronize their Slot Counters such that the next Slot is for Sensor ID 0.
F_DIAG	Addressing/ Broadcast	DIAG_ADR DIAG_ENABLE	216	240	264	Sensor(s) enter Diagnostics as described in User- Initiated Diagnostic Support.

Note: When using SENT_MODE = 7, tick times shorter than 1.5 µs are not recommended. With tick times less than 1.5 µs, the nominal 5-tick low portion of a SENT pulse may be interpreted as 9 ticks, overlapping with the F_OUTPUT range. FP_ADJ (See EEPROM address 0x308) may be used to increase the minimum tick level of the F_OUTPUT pulse to alleviate possible bus conflicts.

SEQUENTIAL SENT (SSENT)

SSENT Addressing Protocol

The SSENT protocol requires Sensors on the bus to be polled in sequential order, meaning increasing, consecutive and rotating order by Sensor ID starting with Sensor ID 0. The Slot for a Sensor is the time at which that Sensor is expected to respond to an Addressing Pulse and other Sensors are expected to not respond.

Each Sensor independently maintains a Slot Counter that is incre-

Long SSENT (SENT_MODE = 7) allows the A1335 to work with existing shared SENT methodologies. The added overhead decreases the rate at which messages may be transmitted.

In order to reduce the burden on the Host, and also to improve detection and recovery from BusContention or system errors affecting the SENT bus, the SSENT protocol has the following Configuration Options that can be selected.

• SLOT_MARKING. When enabled, each Sensor will wait a

mented each time the Sensor detects an Addressing Pulse. This Slot Counter becomes the Slot Number, which is used by the Sensor to decide which Sensor is being polled by the Host. The Slot Counter is compared to the Sensor ID, and if they match, that Sensor responds with the SENT Frame, and all other Sensors do not respond, although they increment their own Slot Counter.

If the Slot Counter is incremented past the total number of Sensors on the bus (MAX_SENSOR option), the Slot Counter is returned to 0. Each Sensor must be programmed consistently with the total number of Sensors so they all roll over to 0 at the same count. Sensors do not increment their Slot Counter on a Broadcast Pulse.

The SSENT protocol relies on each Sensor maintaining the exact same Slot Number by counting the Addressing Pulses. In order to synchronize all Sensors to the same Slot Number, the SSENT protocol has a broadcast F_SYNC pulse that is used by the Host to force all Sensors to reset their SlotCounter to 0. different length of time following an Addressing Pulse, based on their Sensor ID. This leaves the SENT bus in a high state for a varying duration before the Sensor pulls the line low to begin the SENT Frame. All Sensors on the bus (including the addressed Sensor) measure this time to interpret the Sensor ID of the transmitting sensor. By comparing this to the Slot Counter, each Sensor can recognize if an unexpected Sensor responded to the Addressing Pulse. By default, the Sensor would then drop Offline, since it cannot be known which Sensor is out-of-sync. This Option increases the overhead on the bus and therefore reduces the maximum rate at which Sensors can be polled. SlotMarking increases the polling time of a Sensor by the Slot Marking time for that Sensor. All sensors on a bus must be configured with the same choice for this option.

Figure 31: SSENT Sensor Addressing – No Slot Marking (3 Sensors on Bus)

Figure 32: SSENT Sensor Addressing – With Slot Marking (4 Sensors on Bus)

Sensor ID	Delay Time in Ticks (Nominal)
0	7*
1	18*
2	36*
3	62*

Table 28: Slot Marking Delay Time

* Delay time not intended for use by host. Tick values are approximate and will differ from part to part due to oscillator variance.

- POR_OFFLINE. When enabled, a Sensor will stay Offline until the Host issues F_SYNC, or one of the other synchronization options takes effect (C_IDLE_SYNC). If disabled, a Sensor will power-up with its SlotCounter set to 0, and will go directly Online. This allows the Sensors to initialize without any Host interaction. However, if a Sensor gets power-on-reset after the bus is in operation, its counter may be out-of-sync with other Sensors, and this could result in bus contention.
- IDLE_SYNC. When enabled, a Sensor will monitor the bus for a long high (BusIdle) period greater than 510 ticks and reset its Slot Counter to 0. This option could be used if Sensor polling is expected to always be periodic and continuous, such that the only extended BusIdle time would be after power-up.

SSENT FUNCTION PULSES

• F_OUTPUT: Addressed sensor will return a SENT frame with sampled magnetic data. If there is data from a sampleand-hold operation available (F_SAMPLE or via C_ZERO_ SAMPLE=1), then that data is returned, otherwise current data is sampled and returned. A Sensor configured with C_ZERO_SAMPLE=1 will sample-and-hold on the rising edge of the F_OUTPUT pulse for Slot 0. A Sensor configured with C_NO_SAMPLE=1 and C_ZERO_SAMPLE=0 will never sample-and-hold, so will always return current data in response to F_OUTPUT.

- F_SAMPLE: All sensors except those configured for NO_ SAMPLE=1 will sample and hold their data at the rising edge of the pulse. If SAMPLE_ADR=0, this is a BroadcastPulse to a Sensor, and that Sensor will not respond. If SAMPLE_ ADR=1, this is also an AddressingPulse to a Sensor, and the addressed sensor will return a SENT frame with either the sampled or current data. The SAMPLE_ADR must be configured the same for all parts on the bus.
- F_DIAG: Sensor(s) will enter self-test Diagnostics based on DIAG_ENABLE and DIAG_ADR options. If configured with DIAG_ADR=0, the Sensor treats F_DIAG as a BroadcastPulse, does not respond, and immediately enters Diagnostics unless DIAG_ENABLE=0. If configured with DIAG_ADR=1, the Sensor treats F_DIAG as an Addressing Pulse. The addressed Sensor does not respond, but enters diagnostics if DIAG_ENABLE=1.
- F_SYNC: All Sensors will synchronize their Slot Numbers by setting their Slot Counters such that the next Addressing Pulse is for Slot 0.

ADDRESSABLE SENT (ASENT)

ASENT Addressing Protocol

The ASENT protocol allows Sensors to be polled in an arbitrary order. The Sensor ID is transmitted by the Host following any AddressingPulse as a series of 0, 1, 2, or 3 IncAdrPulses. After this sequence, the SENT line is left in a high state, and each sensor will recognize after a time period of about 18 nominal TICKs that there are no more IncAdrPulses coming. The sensor whose ID matches the number of IncAdrPulses received will respond.

ASENT Function Pulses

- F_OUTPUT: Addressed sensor will return a SENT frame with sampled magnetic data. If there is data available from a sample-and-hold operation (F_SAMPLE), then that data is returned, otherwise current data is sampled and returned. A Sensor configured with NO_SAMPLE=1 will not sampleand-hold, so will always return current data in response to F_OUTPUT.
- F_SAMPLE: All sensors except those configured for NO_ SAMPLE=1 will sample and hold their data at the rising edge of the pulse. If SAMPLE_ADR=0, this is a BroadcastPulse

to a Sensor, and that Sensor will not respond. If SAMPLE_ADR=1, this is also an AddressingPulse to a Sensor, and the addressed sensor will return a SENT frame with either the sampled or current data. The SAMPLE_ADR must be configured the same for all parts on the bus.

• F_DIAG: Sensor(s) will enter self-test Diagnostics based on C_DIAG_ENABLE and C_DIAG_ADR options. If configured with DIAG_ADR=0, the Sensor treats F_DIAG as a BroadcastPulse, does not respond, and immediately enters Diagnostics unless DIAG_ENABLE=0. If configured with DIAG_ADR=1, the Sensor treats F_DIAG as an AddressingPulse. The addressed Sensor does not respond, but enters diagnostics if DIAG_ENABLE=1.

ASENT Host Requirements:

- The Host must initiate SENT frame output by selecting appropriate Function pulses.
- The Host must detect timeouts or SENT frame contention following any Function pulse, and take appropriate recover action.

Figure 33: ASENT IncAdrPulse (Output by Host)

Figure 34: ASENT Sensor Addressing

SENSOR MAGNETIC DATA SAMPLING

Sensors sample their magnetic data based on a combination of FunctionPulse and configuration options. There are two types of sampling supported: SampleOnOutput and SampleAndHold.

SampleOnOutput:

SampleOnOutput is when the Sensor samples magnetic data within a short time period preceding the transmission of that data in the SENT frame. This provides the Host with a minimal latency between the data sample and its reception at the Host. The sensor uses SampleOnOutput in the following cases:

• An F_OUTPUT function is addressed to that sensor and no held data is present.

Figure 35: SampleOnOutput Example

SampleAndHold

SampleAndHold is when the Sensor samples magnetic data on the rising edge of a specific FunctionPulse and holds it for output in a SENT frame later in time, when addressed. This allows the data sampling from multiple sensors to be synchronized, with the tradeoff in latency. The sensor does a SampleAndHold of its magnetic data in the following cases:

- An F_SAMPLE function is broadcast, unless the sensor is configured with NO_FSAMPLE = 1.
- The Host initiates an F_OUTPUT function in SSENT mode, the SlotNumber is for Sensor ID 0, and the sensor is configured with ZERO_SAMPLE = 1.

Once the Sensor has data held from a SampleAndHold, it transmits it in the SENT frame the next time it is addressed. If the sensor is again polled before another SampleAndHold, then that Sensor will return the same data unless certain events intervene, in which case the SampleAndHold data is discarded. These events are:

- A diagnostic is executed that prevents the SENT interface from obtaining valid magnetic data from the sensors logic (CVH_SelfTest).
- The SENT interface is disabled, for instance the SENT line is taken over by the receipt of a Manchester Access Code.

If a sensor is polled and no SampleAndHold data is available (for instance, if the part comes online after a SampleAndHold has been issued), it will sample current data. It is not required that all Sensors on a shared bus be configured the same for sampling. This allows a subset of the Sensors on a shared bus to be synchronized for data sample, while others always perform Sample-OnOutput.

SENSOR STATES: OFFLINE, BUS SYNC, AND ON-LINE

Figure 36: SampleAndHold (SSENT or ASENT)

Figure 37: SampleAndHold SSENT with ZERO_SAMPLE = 1

Offline:

Offline is when the sensor is not actively interpreting the state of a shared SENT bus. In the Offline state, the Sensor will not drive the SENT bus. A Sensor is Offline:

- When unpowered, or after power-up
- After a reset that would reset the SENT logic (POR)
- During CVH self test
- After BusContention is detected (unless stated otherwise)

The Sensor exits Offline state into BusSync state once its SENT logic becomes functional, after it monitors the SENT bus long

enough to flush any internal synchronization or filtering pipelines, and sees the SENT bus high. This is necessary to guarantee that any subsequent low pulses are measured as their full duration.

Bus Sync:

BusSync is the state in which the Sensor determines to which Addressing Pulse it should respond. For ASENT, this state is unnecessary and it will immediately transition from Offline to Online. For SSENT, the Sensor will first monitor the SENT bus until it can synchronize its SlotCounter to the other Sensors on the bus before responding to any Addressing Pulses, but will always respond to Broadcast Pulses, even in the BusSync state.

A sensor configured for SSENT will set its SlotCounter and exit BusSync to Online when:

- The Host issues a F_SYNC pulse. The sensor immediately know the next slot is for Sensor ID 0, and can then respond correctly.
- IDLE_SYNC is enabled and the bus is high (BusIdle) for at least a fixed (greater than 510 Ticks) period of time.
- POR_OFFLINE = 0, and the sensor exits power-on-reset.

Online:

In the Online state, the sensor is actively interpreting the shared bus looking for and responding to Function Pulses. From Online, a sensor will go Offline when:

- It is powered down or reset.
- It responds to a CVH self test diagnostic request.
- It detects BusContention (SSENT mode).

USER-INITIATED DIAGNOSTIC SUPPORT

The CVH self-test, which validates signal path integrity from the Analog front-end through the digital detection and processing circuitry, may be initiated when using any version of the SENT protocol (SENT, TSENT, SSENT, or ASENT), provided the DIAG_ENABLE bit is set within EEPROM.

For ASENT and SSENT configurations, diagnostics are initiated via the F_DIAG FunctionPulse, unless disabled by DIAG_ ENABLE=0. The DIAG_ADR option configures a Sensor to interpret this function as Addressing instead of a Broadcast. Sensors configured as Broadcast will enter diagnostics as soon as the

F_DIAG pulse is detected. Sensors configured as Addressing will only enter diagnostics if they are addressed. Sensors will timeout in response to the F_DIAG, whether or not entering diagnostics

For SENT and TSENT configurations, user-initiated diagnostics

Figure 38: Broadcast Diagnostic Request for ASENT and SSENT

Figure 39: Addressed Diagnostic Request for ASENT and SSENT

are triggered, if enabled by DIAG_ENABLE=1, by a DiagStomp of the frame. A DiagStomp is a deliberate creation of BusContention (Stomp) by the Host during the output of a frame by the Sensor. See the section on BusContention/Stomp for an explanation of the Stomp. Once the BusContention is detected, the Sensor releases the SENT bus and initiates the diagnostic.

If an error is encountered, the CVH self-test returns a Self-Test

Figure 40: DiagStomp for SENT or TSENT

Error Flag. Depending on SENT configurations this self-test failure is indicated by:

- 1. Hard Error flag set in the Status and Communication Nibble
- The Self-Test Error flag (bit 17 of the status bits) decoded via the slow channel serial message. This is possible for SCN_ MODE = 1, 5, and 7.
- 3. Self-Test Error flag (bit 17 of Status bits), via added Status bits. This flag is received every other SENT message frame when using DATA_MODE=2 and every 4th frame for DATA_MODE=6.
- 4. Self-Test Error flag (bit 17 of Status bits), via rotating extended data nibbles. This follows same rotating scheme as the slow serial channel. Applies to DATA MODE=3 and 7.
- 5. The ST bit (bit 2) of the Self-Test and ID nibble. This nibble is provided in DATA_MODEs 4 through 7.

SENT Message Frame Descriptions

The general format of a SENT message frame is shown in Figure 20. The individual sections of a SENT message are described in Table 29.

Table 29: SENT Message Frame Section Definitions

Section	Description
Synchronization and Calibration	1
Function	Provide the external controller with a detectable start of the message frame. The large quantity of ticks distinguishes this section, for ease of distinction by the external controller.
Syntax	Tick count: 56
Status and Communication	
Function	Provides the external controller with the status of the A1335 and indicates the format and contents of the Data section.
Syntax	Nibbles: 1 Tick count: 12 to 27 Field width: 4 bits 1:0 Device status (indicates either a hard or soft error condition) 3:2 Message serial data protocol (set by SENT_SERIAL parameter
Data	
Function	Provides the external controller with data selected by the SENT_DATA parameter.
Syntax	Nibbles: 3 to 6 Tick count: 12 to 27 (each nibble) Field width: 4 bits (each nibble)
CRC	
Function	Provides the external controller with cyclic redundancy check (CRC) data for certain error detection routines applied to the Data nibbles.
Syntax	Nibbles: 1 Tick count: 12 to 27 (each nibble) Field width: 4 bits
Pause Pulse	
Function	Additional time can be added at the end of a SENT message frame to synchronize each SENT message with the internal angle measurement updates, determined by the SENT_UPDATE parameter.
Syntax	Quantity of ticks: 12 tick minimum and 768 tick maximum (length determined by SENT_UPDATE option and by the individual structure of each SENT message. If a Pause pulse reaches 768 ticks, it restarts with a minimum length of 12 ticks) Quantity of bits: n/a

SENT Data Programming Parameters

Table 30: SCN_MODE (Register Address: 0x319, bits 14:12)

Function	Status and Communication Nibble Format Defines role of bits within the Status and Communication nibble																
Syntax	Field width: 3 bits																
Related Commands	-	-															
	SCN_M	ODE		Bit 3		Bit 2			Bit 1			Bit 0					
	000			0			0				Soft		Hard				
	001			Ser	ialSyn	C		Serial	Data			Soft			Hard		
	010			I	D[1]			ID[0]			Soft			Hard		
Values	011				0			0			0		Soft+Hard				
	100			0		0			ID[1]		ID[0]						
	101			SerialSync		SerialData			ID[1]		ID[0]						
	110	110		Soft		Hard			ID[1]			ID[0]					
	111			Ser	ialSyn	C	SerialData			0			Soft+Hard				
Options	-																
	The SerialSync and SerialData bits form a 16-bit message, transmitted over sixteen consecutive SENT frames. The message contents are arranged as shown below:																
	SCN Bit	Nibble #															
Examples		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	SerialSync	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	SerialData	Message ID Data					CRC										
							Sho	ort Seria	al Messa	age							

Table 31: SENT_DRIVER (Register Address: 0x319, bits 22:20)

Function	Output Signal Configuration Sets configuration of the output signal slew-rate control. Sets the ramp rate on the gate of the output driver, thereby changing slew rate at the output.				
Syntax	Field width: 3 bits				
Related Commands	-				
	Code	Fall Time (80% to 200	% Typical Values) (μs)		
	Code	C _{LOAD} = 100 pF	C _{LOAD} = 1 nF		
	000 (Default)	0.031	0.102		
	001	0.075	0.105		
	010	0.130	0.226		
values	011	0.180	0.296		
	100	0.460	0.622		
	101	0.930	1.100		
	110	1.900	1.900		
	111	2.900	2.700		
Options	-	·			
Examples	-				

Table 32: DATA_MODE (Register Address: 0x319, bits 18:16)

	Data Nibble Format
Function	Quantity and contents of Data nibbles in message. (Does not relate to data contained in the Status and
Syntax	Field width: 3 bits
Related Commands	-
	000: Nibbles 1,2,3: Angle data (nibbles 4,5,6 skipped)
Values	001: Nibbles 1,2,3: Angle data; Nibbles 4,5: Eight bit alive counter; Nibble 6: 1's complement of Nibble1
	010: Nibbles 1,2,3: Angle data; Nibbles 4,5,6: Status bits, alternates between the two 12-bit words.
	011: Nibbles 1,2,3: Angle data; Nibble 4: Message ID (see Short Serial Output); Nibbles 5,6: Rotating Extended data (see Short Serial Output)
	100: Nibbles 1,2,3: Angle data Nibble 4: Self-test and ID
	101: Nibbles 1,2,3: Angle data Nibble 4: Self-test and ID
	110: Nibbles 1,2,3: Angle data Nibbles 4,5: Status bits. Alternates between four 8-bit frames Nibble 6: Self-test and ID
	 Nibbles 1,2,3: Angle data Nibble 4: Message ID [3:1] and Upper/Lower (0/1) indicated via bit 0. (see Short Serial Output) Nibble 5: Rotating Extended data, 1 nibble at a time (see Short Serial Output) Nibble 5: Self-test and ID
Options	-
Examples	_

Table 33: SENT_MODE (Register Address: 0x317, bits 2:0)

Function	Selects between the various SENT update rates. Also used to select various modes of triggerable SENT.			
Syntax	eld width: 3 bits			
Related Commands				
	0: Disable, no SENT output.			
	1: No Pause pulse; new frame immediately follows previous frame.			
Values	0: SENT message frame synchronized to internal angle update rate. Pause pulse inserted to new SENT transmission corresponds to a fresh angle sample.	ensure each		
	 Triggered SENT mode (TSENT). Pause pulse held indefinitely until receipt of trigger pulse low) from the controller, SENT message begins once output is released. Data latched nea 	(OUT pulled r end of SCN.		
	 Triggered SENT mode (TSENT). Pause pulse held indefinitely until receipt of trigger pulse low) from the controller, SENT message begins once output is released. Data latched on f trigger. 	(OUT pulled alling edge of		
	1: Addressable SENT mode (ASENT). See Shared SENT section.			
	0: Sequential SENT mode (SSENT). See Shared SENT section.			
	1: Long SSENT. Supports alternative SENT line sharing protocol. See Shared SENT section			
Options				
Examples				

Table 34: SENT_TICK (Register Address: 0x317, bits 10:4)

Function	Tick Duration Sets the SENT Tick time: SENT_TICK/16 MHz = tick (μs)					
Syntax	Field width: 7 bits Any value from 0 to 127 can be used (although an internal limit of one clock period is forced)					
Related Commands	-	-				
	Code	Tick Time (µs)	Coefficient			
	000 0000*	0.0625	1/16 (a minimum of one clock period is forced internally)			
	000 0001*	0.0625	1/16			
	000 0010*	0.125	2/16			
	000 0011*	0.1875	3/16			
	000 0100*	0.25	4/16			
Values	000 1000	0.5	8/16			
	001 0000	1	16/16			
	001 1000	1.5	24/16			
	011 0000	3	48/16			
	110 0000	6	96/16			
	111 1110	7.875	126/16			
	111 1111	7.9375	127/16			
Options	-					
Examples	-					

Tick Times shorter than 0.5 µs are not guaranteed.

Table 35: CIS (Register Address: 0x319, bit 15)

Function	SENT CRC includes the Status and Communication Nibble (SCN)		
Syntax	Field width: 1 bit		
Related Commands	-		
Values	0: SCN is not included in the CRC nibble.		
	1: SCN bits are covered via the CRC nibble (does not conform to the J2716 SENT standard)		
Options	-		
Examples	-		

Table 36: UI (Register Address: 0x309, bit 23)

Function	Enables/Disables User initiated diagnostic (CVH self-test) via SENT.		
Syntax	Field width: 1 bit		
Related Commands	-		
Values	0: CVH self-test cannot be initiated via SENT (F_DIAG or Stomp)		
	1: CVH self-test may be initiated through SENT via a F_DIAG pulse or Stomp		
Options	-		
Examples	-		

ASENT/SSENT SPECIFIC FIELDS

Table 37: DA (Register Address: 0x319, bit 9)

Function	Treat F_DIAG as an addressing pulse.		
Syntax	Field width: 1 bit		
Related Commands	-		
Values	0: F_DIAG is treated as a broadcast pulse. Sensor will enter diagnostic mode on any F_DIAG pulse (if UI = 1)		
	1: F_DIAG is treated as an addressing pulse. Sensor will only enter diagnostic mode if properly addressed		
Options	-		
Examples	-		

Table 38: MAXID (Register Address: 0x308, bits 17:16)

Function	Specifies highest sensor ID number on the shared SENT bus		
Syntax	Field width: 2 bits		
Related Commands	-		
Values	00: Highest ID value is 0. Sensor is not sharing the SENT line		
	01: Highest ID value is 1. Two sensors are sharing the SENT line		
	10: Highest ID value is 2. Three sensors are sharing the SENT line		
	11: Highest ID value is 3. Four sensors are sharing the SENT line		
Options	-		
Examples	-		

Table 39: NS (Register Address: 0x319, bit 11)

Function	No Sample. Sensor does not sample angle on receipt of an F_SAMPLE pulse		
Syntax	Field width: 1 bit		
Related Commands	-		
Values	0: On receipt of an F_SAMPLE pulse, sensor samples and holds angle data		
	1: Sensor does not sample and hold data on receipt of an F_SAMPLE pulse		
Options	-		
Examples	-		

Table 40: FA (Register Address: 0x319, bit 8)

Function	F_SAMPLE addressing. Sensor treats the F_SAMPLE pulse as an addressing pulse			
Syntax	ield width: 1 bit			
Related Commands	-			
Values	 0: F_SAMPLE is treated as a broadcast pulse. Sensor will sample and hold angle data on any F_SAMPLE pulse (unless NS = 1) 1: F_SAMPLE is treated as an addressing pulse. Sensor will only sample and hold angle data on an F_SAMPLE pulse if properly addressed (unless NS = 1) 			
Options	-			
Examples	-			

SSENT SPECIFIC FIELDS

Table 41: IS (Register Address: 0x319, bit 23)

Function	IDLE_SYNC. Sensor resets slot counter if SENT bus idle for more than 510 Ticks (SSENT only).		
Syntax	Field width: 1 bit		
Related Commands	-		
Values	 Sensor takes no action for an idle SENT line If SENT line is idle for greater than 510 Ticks, internal slot counter is reset to 0. All sensors sharing a SENT line should have matching IS settings 		
Options	-		
Examples	-		

Table 42: PO (Register Address: 0x319, bit 19)

Function	POR_OFFLINE. Sensor stays offline after power on reset (SSENT only).					
Syntax	Field width: 1 bit					
Related Commands	-					
	0: After a power-on-reset sensor will go online with a slot counter of 0					
Values	1: Sensor stays offline following a power-on-reset. Sensor goes online after slot counter synchronization via an F_SYNC pulse or IDLE_SYNC					
Options	-					
Examples	-					

Table 43: SM (Register Address: 0x317, bit 3)

Function	SLOT_MARKING enable (SSENT only).					
Syntax	Field width: 1 bit					
Related Commands	-					
Values	0: No Slot marking pulses					
Values	1: Sensor will output a bus high delay after an addressing pulse, based on sensor ID					
Options	-					
Examples	-					

Table 44: ZS (Register Address: 0x319, bit 10)

Function	ZERO_SAMPLING. Sensor samples and holds data at Slot 0 (SSENT only)					
Syntax	Field width: 1 bit					
Related Commands	-					
Values	0: No special action at slot = 0					
	1: Sensor performs a sample and hold when its slot counter resets to 0					
Options	-					
Examples	-					

Table 45: FP_ADJ (Register Address: 0x308, bits 19:18)

Function	Function Pulse Adjust. Only for Long SSENT (SENT_MODE = 7). Increases the lower threshold of F_OUTPUT pulse by 0-3 Ticks. Reduces possible misinterpretation of F_OUTPUT pulses at sub-1.5 µs Tick times					
Syntax	Field width: 2 bits					
Related Commands	-					
	00: No Change to F_OUTPUT pulse width. Minimum width = 9 Ticks					
Values	01: Minimum width of F_OUTPUT increased by 1 Tick. Min = 10 Ticks					
values	10: Minimum width of F_OUTPUT increased by 2 Ticks. Min = 11 Ticks					
	11: Minimum width of F_OUTPUT increased by 3 Ticks. Min = 12 Ticks					
Options	-					
Examples	-					

APPENDIX B: SPI INTERFACE ERROR FLAG DESCRIPTION

IER Flag

The IER flag is located in bit 9 of the ERR serial register (0x24:0x25). This flag is designed to assert when the IC detects an improper communication frame, via either SPI or Manchester. For the purposes of this appendix, only the behavior in regards to the SPI bus will be discussed. The IER flag will assert on the following conditions:

- An improper number of SPI clocks are detected
- The MSB of the MOSI packet is a logic '1'

Table 46: Err Serial Register

Addr.	0x24							0x25								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	Register identifier			XER	XOV	IER	CRC	NR	AT	AH	AL	OV	UV	MH	ML	

Behavior When Sharing SPI lines

The IER flag may provide an erroneous indication when sharing the SCLK line amongst multiple ICs. In the case where an IC is held inactive by bringing the CS line high, the inactive IC(s) will continue to count falling SCLK edges. This results in an invalid number of observed SCLK edges, and the IER flag to assert on the next SPI transaction of the IC. False IER flag assertions differ based on the size of the SPI packet.

SIXTEEN BIT SPI PACKETS

The IER flag will always assert if, during the CS high period, the SCLK line is brought low as follows:

• At least one time if using a 16-bit SPI packet.

Impact of IER flagging with 16-Bit Packets

When an incorrect number of SCLK edges is observed by the IC, the following occurs:

- 1. The IER flag will trigger.
- 2. If the packet preceding the CS high time is a read:
 - A. If SCLK drops low within 70 ns of the CS rising edge, there is a possibility the read will be discarded. If this occurs, the output will correspond to the last valid read request for that device.
 - B. If the SCLK edge occurs after 70 ns of the CS rising edge, the read is not discarded, potentially corrupting the

next immediate response from the device.

- 3. If the packet preceding the CS high time is a write:
 - A. If SCLK drops low within 70 ns of the CS rising edge, there is a possibility the write will be discarded.
 - B. If the SCLK edge occurs after 70 ns of the CS rising edge, the write will occur, but the IER flag will still assert.

TWENTY BIT SPI PACKETS

When using 20-bit SPI packets, the IER flag may occur when the SCLK line is brought low while CS is high. The probability of a false IER flag asserting is timing dependent and will differ from device to device, but should not occur on more than 3.2% of all SPI transactions. Lab characterization has shown significantly lower assertion rates, with false flags on 0.00% to 0.80% of all SPI transactions.

Impact of IER flagging with a 20-Bit Packet

When using a 20-bit SPI packet, the following will occur if an incorrect number of SCLK edges is observed:

- 1. The IER flag will trigger.
- 2. If the packet preceding the CS high time is a read:
 - A. If SCLK drops low within 70 ns of the CS rising edge, there is a possibility the read will be discarded. If this occurs, the output will correspond to the last valid read request for that device.
 - B. If the SCLK edge occurs after 70 ns of the CS rising edge, the read will take place as expected.
- 3. If the packet preceding the CS high time is a write:
 - A. If SCLK drops low within 70 ns of the CS rising edge, there is a possibility the write will be discarded.
 - B. If the SCLK edge occurs after 70 ns of the CS rising edge, the write will occur, but the IER flag will still assert.

Avoiding IER Flag Assertion

The following methods may be used to avoid false IER flag assertions:

1. Use dedicated SCLK lines for each IC and hold the SCLK line high when CS is high.

A. This prevents the IC from seeing SCLK edge transitions when CS is high.

Figure 41: Separate SCLK Lines

- 1. Use a 21-bit SPI packet.
 - A. When using a 21-bit SPI packet, the IC does not count SCLK edges when the CS pin is held high. This prevents the IER flag from improperly asserting, with the exception of power-on.

USING A 21-BIT SPI PACKET

No special EEPROM programming is required for the A1335 to support a SPI packet size of 21 bits; the master must simply send 21 SCLK pulses during the CS low period. The format of the SPI message is shown in Figure 42.

The Master Output Slave In (MOSI) signal consists of: a 1-bit

Sync bit defined as a logic '0', 1-bit \overline{R}/W , 6 address bits, 4 CRC bits, and an additional logic '0'. The extra logic '0' sent on the 21st clock tick effectively shifts the standard 20-bit packet left by one place value.

The Master Input Slave Out (MISO) signal consists of: 16 data bits, the contents of which are determined by the address of the register being read, 4 CRC bits, and a repeat of the MSB of the CRC value. The repeated CRC bit shifted out on the 21st clock edge should be ignored by the master when processing the CRC to validate the message contents

POWER-ON BEHAVIOR WITH A 21-BIT SPI PACKET

If the SCLK line is shared on two or more ICs, the IER flag will assert on all idle A1335 die (CS held high) after the first SPI transaction (on the bus), following power-up. This occurs *independent* of the 21-bit SPI packet. This spurious IER flag asserts, on the idle die, only during the first SPI transaction. All subsequent SPI transactions will process correctly. This spurious assertion will not affect any future reads or writes to the device while power is maintained. If the IC is programmed to validate the CRC on MOSI, a CRC error flag (Bit 8 of the ERR serial register) will also assert, related to the spurious detection of a bad SPI packet

Due to the initial assertion of the IER flag, it is recommended to clear all error and warning flags on all A1335 ICs following power-on (this is "good practice", independent of the false IER flag assertion). By doing this, the false IER flag is cleared, preventing it from masking a real SPI communication issue.

Figure 42: 21-bit SPI Packet Format

Additional SPI Examples

The examples below show differing SPI implementations. All figures assume a shared SPI bus (MISO, MOSI, SCLK) between two sensors, with individual CS lines.

Figure 43 shows an example of pipelining SPI reads between two sensors, which can result in discarded packets or corrupted data when used with 16 SPI packets. In this example, SPI reads are bounced between Sensor 1 and Sensor 2, one frame at a time. During the interval in which the CS lines are high, the inoperative sensor will detect an incorrect number of edges, asserting the IER flag, and potentially corrupting the following read response.

Figure 44 is a modified version of the pipelining shown in Figure 43. The first read response from each sensor is known to be corrupt, and is ignored. Because of this, the second read request (which results in the first read response on the next sequence) can be a NOP command, resulting in all zeros from the device (a NOP command is a read of serial register 0x0, which is hardcoded with all 0s). Inserting a NOP command between each valid read response ensures the data placed in the SPI buffers prior to the second response is valid.

It should be noted that the IER flag will assert on every changeover to a new die (CS line) when using this implementation due to the incorrect number of SCLK edges detected during the CS high period.

Figure 45 shows a 20-bit SPI packet. This removes the potential for incorrect read data (assuming the SCLK edge occurs 70 ns or later following the CS rising edge), allowing the two sensors to be addressed in a sequential manner, one frame per each sensor. This implementation has the added advantage of including a 4-bit CRC within each response. The IER flag may still assert when using a 20-bit packet.

Figure 46 shows implementation of a 21-bit SPI packet. This removes the false IER flag assertion and any potential for incorrect data interpretation. Allegro recommends using a 21-bit SPI packet when sharing SPI lines.

Figure 43: Implementation of SPI using 16-bit packets resulting in IER flag assertion and potentially corrupted data

Figure 44: Implementation of SPI using 16-bit packets; valid data, IER flag will still assert

Figure 45: SPI Implementation using 20-bit packets; data contents are valid however IER flag may still assert

Figure 46: SPI Implementation using 21-bit packets; data contents are valid; no false IER flag generation

Revision History

Number	Date	Descriptioon					
-	July 15, 2016	Initial release					
1	November 30, 2016	Corrected Low Clamp Angle description (page 45) and Out-of-Range Magnetic Signal text (page 48).					
2	July 26, 2017	Updated SPI Interface section (p. 21); corrected clockwise/counterclockwise rotation in RO [21] (p. 49), LR [18] (p. 50), RO [17] (p. 61), and LR [14] (p. 62).					
3	May 13, 2019	Updated Extended Access Commands to Processor 0xFFF9 purpose (p. 38) and DATA_MODE bits (p. 74).					
4	November 8, 2021	Updated Address: 0x02:03 R/W (p. 5), Address: 0x0A:0B R/W (p. 6), Address: 0x1E:0x1F R/W bits 15-8 (p. 8), Address: 0x20:0x21 Reset bits 14-0 (p. 9), Address: 0x22:0x23 Reset bits 11, 9, 8, 4, 0 (p. 10), Address: 0x24:0x25 R/W and Value bits 11, 9-7 (p. 11), Address: 0x26:0x27 Value and Reset bits 11, 9, 8, 3, 2 (p. 13), Address: 0x28:0x29 Reset bits 11-0 (p. 15), Address: 0x34:0x35 R/W and Value bits 11, 9-7 (p. 16, p. B-1), SPI Interface table (p. 21), EEPROM Register Table R/W and Value rows removed (p. 61-75), RO [21] (p. 49), LR [18] (p. 50), RO [17] (p. 61), LR [14] (p. 62), Address: 0x30B bits 20-16 default, DH [22] (p. 65), Address: 0x30A bits 20-16 default (p. 66), Address: 0x30B bits 20-16 default (p. 67), Address: 0x315 bits 23-12 default, MAX_ANGLE [23:12] (p. 70), Address: 0x317 bits 7, 1, 0 default (p. 72), Address: 0x319 bits 17, 12, 3, 2 default (p. 74); added comment (p. A-11), Appendix B (p. B-1 to B-4)					

Copyright 2021, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

I²C[™] is a trademark of Philips Semiconductors.

