FEATURES AND BENEFITS - Industry-leading noise performance with greatly improved bandwidth through proprietary amplifier and filter design techniques - High bandwidth 1 MHz analog output - Patented integrated digital temperature compensation circuitry allows high accuracy over temperature in an open loop sensor - 1.2 m Ω primary conductor resistance for low power loss and high inrush current withstanding capability - Small footprint, low-profile SOIC8 package suitable for space-constrained applications - Integrated shield virtually eliminates capacitive coupling from current conductor to die due to high dV/dt voltage transients - 5 V, single supply operation - Output voltage proportional to AC or DC current - Factory-trimmed sensitivity and quiescent output voltage for improved accuracy - High PSRR for noisy environments ### PACKAGE: 8-Pin SOIC (suffix LC) Not to scale #### **DESCRIPTION** The AllegroTM ACS730 provides economical and precise solutions for AC or DC current sensing in industrial, commercial, and communications systems. The device package allows for easy implementation by the customer. Typical applications include motor control, load detection and management, switched-mode power supplies, and overcurrent fault protection. The device consists of a precise, low-offset, linear Hall sensor circuit with a copper conduction path located near the surface of the die. Applied current flowing through this copper conduction path generates a magnetic field which is sensed by the integrated Hall IC and converted into a proportional voltage. Device accuracy is optimized through the close proximity of the magnetic field to the Hall transducer. A precise, proportional voltage is provided by the Hall IC, which is programmed for accuracy after packaging. The output of the device has a positive slope when an increasing current flows through the primary copper conduction path (from pins 1 and 2, to pins 3 and 4), which is the path used for current sensing. The internal resistance of this conductive path is typically $1.2 \, \mathrm{m}\Omega$, providing low power loss. The terminals of the conductive path are electrically isolated from the sensor leads (pins 5 through 8). This allows the ACS730 current sensor to be used in high-side current sense applications without the use of high-side differential amplifiers or other costly isolation techniques. The ACS730 is provided in a small, low-profile surface-mount SOIC8 package. The leadframe is plated with 100% matte tin, which is compatible with standard lead (Pb) free printed circuit board assembly processes. Internally, the flip-chip device is considered Pb-free. However, the solder bump connections are available in a Pb-free or high-temperature Pb-based option. Part numbers followed by "-S" are manufactured with tin-silver-based solder bumps, making these parts Pb-free compliant without the use of RoHS exemptions. Part numbers followed by "-T" are manufactured with Pb-based solder bumps using allowed RoHS exemptions. The ACS730 outputs an analog signal, V_{IOUT}, that varies linearly with the bidirectional AC or DC primary sensed current, I_p, within the range specified. **Typical Application** ## 1 MHz Bandwidth, Galvanically Isolated Current Sensor IC in Small Footprint SOIC8 Package #### **SELECTION GUIDE** | Part Number [1] | Optimized
Range, I _P
(A) | Sensitivity ^[1] ,
Sens(Typ)
(mV/A) | T _A
(°C) | Packing | |--------------------|---|---|------------------------|-------------------------------------| | -S VARIANT [2] | | | | | | ACS730KLCTR-20AB-S | ±20 | 100 | | | | ACS730KLCTR-30AB-S | ±30 | 66 | | | | ACS730KLCTR-30AU-S | 30 | 120 | | | | ACS730KLCTR-40AB-S | ±40 | 50 | -40 to 125 | Tape and reel, 3000 pieces per reel | | ACS730KLCTR-50AB-S | ±50 | 40 | | | | ACS730KLCTR-65AB-S | ±65 | 30 | | | | ACS730KLCTR-80AU-S | 80 | 50 | | | | -T VARIANT [3] | | | , | | | ACS730KLCTR-20AB-T | ±20 | 100 | | | | ACS730KLCTR-30AB-T | ±30 | 66 | | | | ACS730KLCTR-30AU-T | 30 | 120 | | | | ACS730KLCTR-40AB-T | ±40 | 50 | -40 to 125 | Tana and roal 2000 pieces per roal | | ACS730KLCTR-40AU-T | 40 | 100 | -40 to 125 | Tape and reel, 3000 pieces per reel | | ACS730KLCTR-50AB-T | ±50 | 40 | | | | ACS730KLCTR-65AB-T | ±65 | 30 | | | | ACS730KLCTR-80AU-T | 80 | 50 | | | ^[1] Measured at V_{CC} = 5 V. [2] "-S" denotes lead-free construction with tin-silver-based solder bumps. [3] "-T" denotes Pb-contained construction with Pb-based solder bumps. Operating performance of "-T" and "-S" devices are identical. "-T" devices are RoHS compliant using allowed exemptions provided in Annex III and IV of Directive 2011/65/EU [Exemptions 7(a), 15, 15(a), as applicable]. # 1 MHz Bandwidth, Galvanically Isolated Current Sensor IC in Small Footprint SOIC8 Package #### **ABSOLUTE MAXIMUM RATINGS** | Characteristic | Symbol | Notes | Rating | Units | |--|----------------------|---------|------------|-------| | Supply Voltage | V _{CC} | | 6 | V | | Reverse Supply Voltage | V _{CC(R)} | | -0.1 | V | | Output Voltage | V _{IOUT} | | 6 | V | | Reverse Output Voltage | V _{IOUT(R)} | | -0.1 | V | | Zero Current Reference Voltage | V _{ZCR} | | 20 | V | | Reverse Zero Current Reference Voltage | V _{ZCR(R)} | | -0.1 | V | | Operating Ambient Temperature | T _A | Range K | -40 to 125 | °C | | Junction Temperature | T _J (max) | | 165 | °C | | Storage Temperature | T _{stg} | | -65 to 170 | °C | #### **ISOLATION CHARACTERISTICS** | Characteristic | Symbol | Notes | Value | Units | |---|----------------------|--|------------|------------------------| | Withstand Strength [1][2] | V _{ISO} | Agency rated for 60 seconds per UL 62368-1 (edition 3) | 2400 | V _{RMS} | | Working Voltage for Basic Isolation [2] | \/ | Maximum approved working voltage for basic (single) isolation | 420 | V _{PK} or VDC | | Working voltage for basic isolation in | V _{WVBI} | according to UL 62368-1 (edition 3) | 297 | V _{RMS} | | Impulse Withstand [2] | V _{IMPULSE} | Tested ±5 pulses at 2/minute in compliance to IEC 61000-4-5, 1.2 µs (rise) / 50 µs (width) | | V _{RMS} | | Clearance | D _{cl} | Minimum distance through air from IP leads to signal leads | 4 | mm | | Creepage | D _{cr} | Minimum distance along package body from IP leads to signal leads | 4 | mm | | Distance Through Insulation | DTI | Minimum internal distance through insulation | 44 | μm | | Comparative Tracking Index | CTI | Material Group II | 400 to 599 | V | ^[1] Production tested for 1 second in accordance with UL 62368-1 (edition 3). #### THERMAL CHARACTERISTICS | Characteristic Symbol | | Test Conditions | Value | Units | |---|------------------|--|-------|-------| | Package Thermal Resistance
(Junction to Ambient) | R _{eJA} | Mounted on the Allegro evaluation board with 1500 mm² of 4 oz. copper on each side, connected to pins 1 and 2, and to pins 3 and 4, with thermal vias connecting the layers. Performance values include the power consumed by the PCB. [1] | 23 | °C/W | | Package Thermal Resistance (Junction to Lead) | R _{θJL} | Mounted on the Allegro ASEK730 evaluation board. | 5 | °C/W | ^[1] Further information about board design and thermal performance also can be found in the Applications Information section of this datasheet. ^[2] Certification pending. ## **Functional Block Diagram** ### **Pinout Diagram and Terminal List Table** Package LC, 8-Pin SOICN Pinout Diagram #### **Terminal List Table** | Number | Name | Description | |--------|-------|---| | 1, 2 | IP+ | Terminals for current being sensed; fused internally | | 3, 4 | IP- | Terminals for current being sensed; fused internally | | 5 | GND | Signal ground terminal | | 6 | VZCR | Zero current reference; outputs a DC voltage equal to V_{IOUT} at $I_P = 0$ A | | 7 | VIOUT | Analog output signal | | 8 | VCC | Device power supply terminal | COMMON ELECTRICAL CHARACTERISTICS [1]: Valid over full range of T_A, V_{CC}= 5 V, unless otherwise specified | Characteristic | Symbol | Test Conditions | Min. | Тур. | Max. | Unit | |--|------------------------|--|-----------------------|-----------------------|------|-------------------| | Supply Voltage | V _{CC} | | 4.5 | 5 | 5.5 | V | | Supply Current | I _{cc} | V _{CC} = 5 V, output open | _ | 17 | 25 | mA | | Power-On Time | t _{PO} | T _A = 25°C | _ | 150 | _ | μs | | Output Capacitance Load | C _L | VIOUT to GND | _ | _ | 0.47 | nF | | Reference Capacitance Load | C _{VZCR} | VZCR to GND | _ | _ | 1 | nF | | Output Resistive Load | R _L | VIOUT to GND, VIOUT to VCC | 10 | _ | _ | kΩ | | Reference Resistive Load | R _{VZCR} | VZCR to GND, VZCR to VCC | 10 | _ | _ | kΩ | | Output High Saturation Voltage [2] | V _{OH} | VIOUT, T _A = 25°C | V _{CC} - 0.4 | V _{CC} - 0.3 | _ | V | | Output Low Saturation Voltage [2] | V _{OL} | VIOUT, T _A = 25°C | _ | 0.1 | 0.2 | V | | Primary Conductor Resistance | R _{IP} | T _A = 25°C | _ | 1.2 | _ | mΩ | | Primary Conductor Inductance | L _{IP} | T _A = 25°C | _ | 2 | _ | nH | | Magnetic Coupling Factor | MCF | T _A = 25°C | _ | 10 | _ | G/A | | Rise Time | t _r | T _A = 25°C, C _L = 0.47 nF | _ | 0.6 | _ | μs | | Propagation Delay | t _{pd} | T _A = 25°C, C _L = 0.47 nF | _ | 0.2 | _ | μs | | Response Time | t _{RESPONSE} | T _A = 25°C, C _L = 0.47 nF | _ | 0.7 | _ | μs | | Output Slew Rate | SR | T _A = 25°C, C _L = 1 nF | _ | 2.67 | _ | V/µs | | Internal Bandwidth | BW | Small signal –3 dB; C _L = 0.47 nF | _ | 1 | _ | MHz | | Noise Density | I _{ND} | Input-referenced noise density;
T _A = 25°C, C _L = 0.47 nF | _ | 40 | _ | μΑ/
√(Hz) | | Noise | I _N | Input-referenced noise;
T _A = 25°C, C _L = 0.47 nF | _ | 40 | _ | mA _{RMS} | | Power Supply Rejection Ratio | PSRR | 0 to 200 Hz, 100 mV pk-pk ripple on V_{CC} , I_P = 0 A, VIOUT and VZCR | _ | 35 | _ | dB | | Sensitivity Power Supply Rejection Ratio | SPSRR | $\begin{array}{c} \text{DC, V}_{\text{CC}}(\text{min}) < \text{V}_{\text{CC}} < \text{V}_{\text{CC}}(\text{max}), \\ \text{I}_{\text{P}} = \text{I}_{\text{PR}}(\text{max}) \end{array}$ | _ | 15 | _ | dB | | Offset Power Supply Rejection Ratio | OPSRR | DC, V _{CC} (min) < V _{CC} < V _{CC} (max) | _ | 30 | _ | dB | | Output Source Current | I _{OUT(src)} | VIOUT shorted to GND | _ | 5.5 | _ | mA | | Output Sink Current | I _{OUT(snk)} | VIOUT shorted to VCC | _ | 3 | _ | mA | | | | T _A = 25°C | -10 | ±3 | 10 | mV | | Zero Current Reference Offset Voltage | V _{ZCR(ofs)} | T _A = 25°C to 125°C | -20 | ±10 | 20 | mV | | | | $T_A = -40$ °C to 25°C | _ | ±10 | _ | mV | | Reference Source Current | I _{VZCR(src)} | VZCR shorted to GND | _ | 2 | _ | mA | | Reference Sink Current | I _{VZCR(snk)} | VZCR shored to VCC | _ | 14 | _ | mA | ^[1] Device may be operated at higher primary current levels, I_P, ambient temperatures, T_A, and internal leadframe temperatures, provided the Maximum Junction Temperature, T_J(max), is not exceeded. [2] The sensor IC will continue to respond to current beyond the range of I_P until the high or low saturation voltage; however, the nonlinearity in this region will be worse than If the sensor IC will continue to respond to current beyond the range of I_P until the high or low saturation voltage; however, the nonlinearity in this region will be worse than through the rest of the measurement range. **xKLCTR-20AB PERFORMANCE CHARACTERISTICS:** Valid over full range of T_A , V_{CC} = 5 V, C_{BYPASS} = 0.1 μ F, unless otherwise specified | Characteristic | Symbol | Test Conditions | Min. | Typ. [1] | Max. | Unit | |---------------------------------------------|-------------------------|---------------------------------------------------------------------------|------|----------|------|------| | NOMINAL PERFORMANCE | | | | | | | | Current Sensing Range | I _{PR} | | -20 | _ | 20 | Α | | Sensitivity | Sens | | _ | 100 | - | mV/A | | Zero Current Output Voltage | V _{IOUT(Q)} | I _P = 0 A, T _A = 25°C | _ | 2.5 | _ | V | | Zero Current Reference Voltage | V _{ZCR} | T _A = 25°C | _ | 2.5 | _ | V | | ACCURACY PERFORMANCE | | | | | | | | Total Output Francis | _ | I _P = I _{P(MAX)} ; T _A = 25°C to 125°C | -4 | ±3 | 4 | % | | Total Output Error [2] | E _{TOT} | $I_P = I_{P(MAX)}$; $T_A = -40^{\circ}C$ to 25°C | _ | ±4 | _ | % | | Consitivity From | E _{sens} | I _P = I _{P(MAX)} ; T _A = 25°C to 125°C | -2.5 | ±1.5 | 2.5 | % | | Sensitivity Error | | $I_P = I_{P(MAX)}$; $T_A = -40^{\circ}C$ to 25°C | _ | ±4 | _ | % | | Office to Maltane | ., | I _P = 0 A; T _A = 25°C to 125°C | -75 | ±50 | 75 | mV | | Offset Voltage | V _{OE} | I _P = 0 A; T _A = -40°C to 25°C | _ | ±50 | _ | mV | | Nonlingouite | _ | Through the full range of I _P ; T _A = 25°C to 125°C | -2 | ±0.75 | 2 | % | | Nonlinearity | E _{LIN} | Through the full range of I _P ; T _A = -40°C to 25°C | _ | ±0.75 | _ | % | | LIFETIME DRIFT CHARACTERISTIC | s | | | | | | | Total Output Error Including Lifetime Drift | E _{tot_drift} | I _P = 20 A | _ | ±6.7 | _ | % | | Sensitivity Error Including Lifetime Drift | E _{sens_drift} | I _P = 20 A | _ | ±3.8 | _ | % | | Offset Voltage Including Lifetime Drift | V _{off_drift} | I _P = 0 A | _ | ±118 | _ | mV | ^[1] Typical values with ± are 3 sigma values. ^[2] Percentage of I_P. **xKLCTR-30AB PERFORMANCE CHARACTERISTICS:** Valid over full range of T_A , V_{CC} = 5 V, C_{BYPASS} = 0.1 μ F, unless otherwise specified | Characteristic | Symbol | Test Conditions | Min. | Typ. [1] | Max. | Unit | |---------------------------------------------|-------------------------|---------------------------------------------------------------------------|------|----------|------|------| | NOMINAL PERFORMANCE | | | · | | | | | Current Sensing Range | I _{PR} | | -30 | - | 30 | Α | | Sensitivity | Sens | | _ | 66 | _ | mV/A | | Zero Current Output Voltage | V _{IOUT(Q)} | I _P = 0 A, T _A = 25°C | _ | 2.5 | - | V | | Zero Current Reference Voltage | V _{ZCR} | T _A = 25°C | _ | 2.5 | - | V | | ACCURACY PERFORMANCE | | | · | | | | | Total Output From [2] | _ | I _P = I _{P(MAX)} ; T _A = 25°C to 125°C | -5 | ±3 | 5 | % | | Total Output Error [2] | E _{TOT} | $I_P = I_{P(MAX)}; T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ | _ | ±5 | - | % | | Considirate Funda | E _{sens} | I _P = I _{P(MAX)} ; T _A = 25°C to 125°C | -3.5 | ±2.5 | 3.5 | % | | Sensitivity Error | | $I_P = I_{P(MAX)}$; $T_A = -40^{\circ}C$ to 25°C | _ | ±5 | _ | % | | Office h Valle and | ., | I _P = 0 A; T _A = 25°C to 125°C | -40 | ±20 | 40 | mV | | Offset Voltage | V _{OE} | $I_P = 0 \text{ A}; T_A = -40^{\circ}\text{C to } 25^{\circ}\text{C}$ | _ | ±30 | _ | mV | | Namilia andre | - | Through the full range of I _P ; T _A = 25°C to 125°C | -2 | ±0.75 | 2 | % | | Nonlinearity | E _{LIN} | Through the full range of I _P ; T _A = -40°C to 25°C | _ | ±0.75 | - | % | | LIFETIME DRIFT CHARACTERISTIC | s | | | | | | | Total Output Error Including Lifetime Drift | E _{tot_drift} | I _P = 40 A | _ | ±6.7 | _ | % | | Sensitivity Error Including Lifetime Drift | E _{sens_drift} | I _P = 20 A | _ | ±3.8 | _ | % | | Offset Voltage Including Lifetime Drift | V _{off_drift} | I _P = 0 A | _ | ±118 | _ | mV | ^[1] Typical values with ± are 3 sigma values. ^[2] Percentage of I_P. **xKLCTR-30AU PERFORMANCE CHARACTERISTICS:** Valid over full range of T_A , V_{CC} = 5 V, C_{BYPASS} = 0.1 μ F, unless otherwise specified | Characteristic | Symbol | Test Conditions | Min. | Typ. [1] | Max. | Unit | |---------------------------------------------|-------------------------|---------------------------------------------------------------------------|------|----------|------|------| | NOMINAL PERFORMANCE | | | | | | | | Current Sensing Range | I _{PR} | | 0 | _ | 30 | Α | | Sensitivity | Sens | | _ | 120 | - | mV/A | | Zero Current Output Voltage | V _{IOUT(Q)} | I _P = 0 A, T _A = 25°C | _ | 0.5 | _ | V | | Zero Current Reference Voltage | V _{ZCR} | T _A = 25°C | _ | 0.5 | _ | V | | ACCURACY PERFORMANCE | | | | | | | | Total Output Error [2] | _ | $I_P = I_{P(MAX)}; T_A = 25^{\circ}C \text{ to } 125^{\circ}C$ | -5 | ±2.6 | 5 | % | | Total Output Error (4) | E _{TOT} | $I_P = I_{P(MAX)}; T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ | _ | ±3.7 | - | % | | Consider From | E _{sens} | I _P = I _{P(MAX)} ; T _A = 25°C to 125°C | -3.5 | ±1.2 | 3.5 | % | | Sensitivity Error | | $I_P = I_{P(MAX)}; T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ | _ | ±3.7 | _ | % | | Officet Voltage | ., | I _P = 0 A; T _A = 25°C to 125°C | -40 | ±35 | 40 | mV | | Offset Voltage | V _{OE} | $I_P = 0 \text{ A}; T_A = -40^{\circ}\text{C to } 25^{\circ}\text{C}$ | _ | ±38 | _ | mV | | NI a relian a suite : | _ | Through the full range of I _P ; T _A = 25°C to 125°C | -2 | ±1 | 2 | % | | Nonlinearity | E _{LIN} | Through the full range of I_P ; $T_A = -40$ °C to 25°C | _ | ±2.3 | _ | % | | LIFETIME DRIFT CHARACTERISTIC | s | | | | | | | Total Output Error Including Lifetime Drift | E _{tot_drift} | I _P = 40 A | _ | ±6.7 | _ | % | | Sensitivity Error Including Lifetime Drift | E _{sens_drift} | I _P = 20 A | _ | ±3.8 | _ | % | | Offset Voltage Including Lifetime Drift | V _{off_drift} | I _P = 0 A | _ | ±118 | _ | mV | ^[1] Typical values with ± are 3 sigma values. $^{^{[2]}}$ Percentage of I_P . **xKLCTR-40AB PERFORMANCE CHARACTERISTICS:** Valid over full range of T_A , V_{CC} = 5 V, C_{BYPASS} = 0.1 μ F, unless otherwise specified | Characteristic | Symbol | Test Conditions | Min. | Typ. [1] | Max. | Unit | |---------------------------------------------|-------------------------|---------------------------------------------------------------------------|------|----------|------|------| | NOMINAL PERFORMANCE | | | · | | | | | Current Sensing Range | I _{PR} | | -40 | - | 40 | Α | | Sensitivity | Sens | | _ | 50 | _ | mV/A | | Zero Current Output Voltage | V _{IOUT(Q)} | I _P = 0 A, T _A = 25°C | _ | 2.5 | - | V | | Zero Current Reference Voltage | V _{ZCR} | T _A = 25°C | _ | 2.5 | - | V | | ACCURACY PERFORMANCE | | | · | | | | | Total Output From [2] | _ | I _P = I _{P(MAX)} ; T _A = 25°C to 125°C | -5 | ±3 | 5 | % | | Total Output Error [2] | E _{TOT} | $I_P = I_{P(MAX)}; T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ | _ | ±5 | - | % | | Considirate Fanor | E _{sens} | I _P = I _{P(MAX)} ; T _A = 25°C to 125°C | -3.5 | ±2.5 | 3.5 | % | | Sensitivity Error | | $I_P = I_{P(MAX)}$; $T_A = -40^{\circ}C$ to 25°C | _ | ±5 | _ | % | | Office h Valle and | ., | I _P = 0 A; T _A = 25°C to 125°C | -40 | ±20 | 40 | mV | | Offset Voltage | V _{OE} | $I_P = 0 \text{ A}; T_A = -40^{\circ}\text{C to } 25^{\circ}\text{C}$ | _ | ±30 | _ | mV | | Namilia andre | - | Through the full range of I _P ; T _A = 25°C to 125°C | -2 | ±0.75 | 2 | % | | Nonlinearity | E _{LIN} | Through the full range of I _P ; T _A = -40°C to 25°C | _ | ±0.75 | - | % | | LIFETIME DRIFT CHARACTERISTIC | s | | | | | | | Total Output Error Including Lifetime Drift | E _{tot_drift} | I _P = 40 A | _ | ±6.7 | _ | % | | Sensitivity Error Including Lifetime Drift | E _{sens_drift} | I _P = 20 A | _ | ±3.8 | _ | % | | Offset Voltage Including Lifetime Drift | V _{off_drift} | I _P = 0 A | _ | ±118 | _ | mV | ^[1] Typical values with ± are 3 sigma values. ^[2] Percentage of I_P. **xKLCTR-40AU PERFORMANCE CHARACTERISTICS:** Valid over full range of T_A , V_{CC} = 5 V, C_{BYPASS} = 0.1 μ F, unless otherwise specified | Characteristic | Symbol | Test Conditions | Min. | Typ. [1] | Max. | Unit | |---------------------------------------------|-------------------------|---------------------------------------------------------------------------|------|----------|------|------| | NOMINAL PERFORMANCE | | | | | | | | Current Sensing Range | I _{PR} | | 0 | - | 40 | Α | | Sensitivity | Sens | | _ | 100 | _ | mV/A | | Zero Current Output Voltage | $V_{IOUT(Q)}$ | $I_P = 0 \text{ A}, T_A = 25^{\circ}\text{C}$ | _ | 0.5 | _ | V | | Zero Current Reference Voltage | V_{ZCR} | T _A = 25°C | _ | 0.5 | _ | V | | ACCURACY PERFORMANCE | | | | | | | | Total Output Error [2] | _ | $I_P = I_{P(MAX)}$; $T_A = 25^{\circ}C$ to 125°C | -5 | ±3 | 5 | % | | Total Output Error (4) | E _{TOT} | $I_P = I_{P(MAX)}$; $T_A = -40$ °C to 25°C | _ | ±5 | _ | % | | Sensitivity Error | E _{sens} | $I_P = I_{P(MAX)}$; $T_A = 25^{\circ}C$ to 125°C | -3.5 | ±2.5 | 3.5 | % | | Sensitivity End | | $I_P = I_{P(MAX)}$; $T_A = -40^{\circ}C$ to 25°C | _ | ±5 | _ | % | | Officet Voltage | | I _P = 0 A; T _A = 25°C to 125°C | -40 | ±20 | 40 | mV | | Offset Voltage | V_{OE} | $I_P = 0 \text{ A}; T_A = -40^{\circ}\text{C to } 25^{\circ}\text{C}$ | _ | ±30 | _ | mV | | Nonlingarity | _ | Through the full range of I _P ; T _A = 25°C to 125°C | -2 | ±0.75 | 2 | % | | Nonlinearity | E _{LIN} | Through the full range of I _P ; T _A = -40°C to 25°C | _ | ±0.75 | - | % | | LIFETIME DRIFT CHARACTERISTIC | s | | | | | | | Total Output Error Including Lifetime Drift | E _{tot_drift} | I _P = 40 A | _ | ±6.7 | - | % | | Sensitivity Error Including Lifetime Drift | E _{sens_drift} | I _P = 20 A | _ | ±3.8 | _ | % | | Offset Voltage Including Lifetime Drift | $V_{\text{off_drift}}$ | I _P = 0 A | _ | ±118 | _ | mV | ^[1] Typical values with ± are 3 sigma values. ^[2] Percentage of I_P. **xKLCTR-50AB PERFORMANCE CHARACTERISTICS:** Valid over full range of T_A , V_{CC} = 5 V, C_{BYPASS} = 0.1 μ F, unless otherwise specified | Characteristic | Symbol | Test Conditions | Min. | Typ. [1] | Max. | Unit | |---------------------------------------------|-------------------------|---------------------------------------------------------------------------|------|----------|------|------| | NOMINAL PERFORMANCE | | | | | | | | Current Sensing Range | I _{PR} | | -50 | _ | 50 | Α | | Sensitivity | Sens | | _ | 40 | - | mV/A | | Zero Current Output Voltage | V _{IOUT(Q)} | I _P = 0 A, T _A = 25°C | _ | 2.5 | - | V | | Zero Current Reference Voltage | V _{ZCR} | T _A = 25°C | _ | 2.5 | _ | V | | ACCURACY PERFORMANCE | | | | | | | | Total Output Error ^[2] | _ | $I_P = I_{P(MAX)}$; $T_A = 25^{\circ}C$ to 125°C | -5 | ±3 | 5 | % | | Total Output Error (2) | E _{TOT} | $I_P = I_{P(MAX)}; T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ | _ | ±5 | - | % | | Consistivity From | E _{sens} | $I_P = I_{P(MAX)}; T_A = 25^{\circ}C \text{ to } 125^{\circ}C$ | -3.5 | ±3 | 3.5 | % | | Sensitivity Error | | $I_P = I_{P(MAX)}; T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ | _ | ±5 | - | % | | Officet Voltage | ., | I _P = 0 A; T _A = 25°C to 125°C | -40 | ±20 | 40 | mV | | Offset Voltage | V _{OE} | $I_P = 0 \text{ A}; T_A = -40^{\circ}\text{C to } 25^{\circ}\text{C}$ | _ | ±30 | _ | mV | | Naudin and . | _ | Through the full range of I _P ; T _A = 25°C to 125°C | -2 | ±0.75 | 2 | % | | Nonlinearity | E _{LIN} | Through the full range of I _P ; T _A = –40°C to 25°C | _ | ±0.75 | _ | % | | LIFETIME DRIFT CHARACTERISTIC | 3 | | | | | | | Total Output Error Including Lifetime Drift | E _{tot_drift} | I _P = 50 A | _ | ±6.7 | _ | % | | Sensitivity Error Including Lifetime Drift | E _{sens_drift} | I _P = 25 A | _ | ±3.8 | _ | % | | Offset Voltage Including Lifetime Drift | V _{off_drift} | I _P = 0 A | _ | ±118 | _ | mV | ^[1] Typical values with ± are 3 sigma values. ^[2] Percentage of I_P. **xKLCTR-65AB PERFORMANCE CHARACTERISTICS:** Valid over full range of T_A , V_{CC} = 5 V, C_{BYPASS} = 0.1 μ F, unless otherwise specified | Characteristic | Symbol | Test Conditions | Min. | Typ. [1] | Max. | Unit | |---------------------------------------------|-------------------------|---------------------------------------------------------------------------|------|----------|------|------| | NOMINAL PERFORMANCE | , | | • | | | | | Current Sensing Range | I _{PR} | | -65 | - | 65 | А | | Sensitivity | Sens | | _ | 30 | - | mV/A | | Zero Current Output Voltage | V _{IOUT(Q)} | I _P = 0 A, T _A = 25°C | _ | 2.5 | _ | V | | Zero Current Reference Voltage | V _{ZCR} | T _A = 25°C | _ | 2.5 | _ | V | | ACCURACY PERFORMANCE | | | · | | | | | Total Output Error [2] | E _{TOT} | $I_P = I_{P(MAX)}; T_A = 25^{\circ}C \text{ to } 125^{\circ}C$ | -5 | ±3 | 5 | % | | | | $I_P = I_{P(MAX)}; T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ | _ | ±5 | _ | % | | Sensitivity Error | E _{sens} | $I_P = I_{P(MAX)}; T_A = 25^{\circ}C \text{ to } 125^{\circ}C$ | -3.5 | ±3 | 3.5 | % | | | | $I_P = I_{P(MAX)}$; $T_A = -40^{\circ}C$ to 25°C | _ | ±5 | - | % | | Offset Voltage | V _{OE} | I _P = 0 A; T _A = 25°C to 125°C | -40 | ±20 | 40 | mV | | | | $I_P = 0 \text{ A}; T_A = -40^{\circ}\text{C to } 25^{\circ}\text{C}$ | _ | ±30 | _ | mV | | Nonlinearity | E _{LIN} | Through the full range of I _P ; T _A = 25°C to 125°C | -2 | ±0.75 | 2 | % | | | | Through the full range of I _P ; T _A = -40°C to 25°C | _ | ±0.75 | - | % | | LIFETIME DRIFT CHARACTERISTIC | S | | | | | | | Total Output Error Including Lifetime Drift | E _{tot_drift} | I _P = 65 A | _ | ±6.7 | _ | % | | Sensitivity Error Including Lifetime Drift | E _{sens_drift} | I _P = 32 A | _ | ±3.8 | _ | % | | Offset Voltage Including Lifetime Drift | V _{off_drift} | I _P = 0 A | _ | ±118 | _ | mV | $^{^{[1]}}$ Typical values with \pm are 3 sigma values. ^[2] Percentage of I_P. **xKLCTR-80AU PERFORMANCE CHARACTERISTICS:** Valid over full range of T_A , V_{CC} = 5 V, C_{BYPASS} = 0.1 μ F, unless otherwise specified | Characteristic | Symbol | Test Conditions | Min. | Typ. [1] | Max. | Unit | |---------------------------------------------|-------------------------|---------------------------------------------------------------------------|------|----------|------|------| | NOMINAL PERFORMANCE | | | | | | | | Current Sensing Range | I _{PR} | | 0 | _ | 80 | Α | | Sensitivity | Sens | | _ | 50 | _ | mV/A | | Zero Current Output Voltage | V _{IOUT(Q)} | I _P = 0 A, T _A = 25°C | _ | 0.5 | _ | V | | Zero Current Reference Voltage | V _{ZCR} | T _A = 25°C | _ | 0.5 | _ | V | | ACCURACY PERFORMANCE | | | • | | | | | Total Output Error [2] | E _{TOT} | I _P = I _{P(MAX)} ; T _A = 25°C to 125°C | -5 | ±1.8 | 5 | % | | | | $I_P = I_{P(MAX)}; T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ | _ | ±5 | _ | % | | Sensitivity Error | E _{sens} | I _P = I _{P(MAX)} ; T _A = 25°C to 125°C | -3.5 | ±1.5 | 3.5 | % | | | | $I_P = I_{P(MAX)}; T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ | _ | ±4.2 | _ | % | | Offset Voltage | V _{OE} | I _P = 0 A; T _A = 25°C to 125°C | -40 | ±21 | 40 | mV | | | | $I_P = 0 \text{ A}; T_A = -40^{\circ}\text{C to } 25^{\circ}\text{C}$ | _ | ±27 | _ | mV | | Nonlinearity | E _{LIN} | Through the full range of I _P ; T _A = 25°C to 125°C | -2 | ±0.3 | 2 | % | | | | Through the full range of I _P ; T _A = -40°C to 25°C | _ | ±2.3 | _ | % | | LIFETIME DRIFT CHARACTERISTIC | s | | | | | | | Total Output Error Including Lifetime Drift | E _{tot_drift} | I _P = 80 A | _ | ±6.7 | _ | % | | Sensitivity Error Including Lifetime Drift | E _{sens_drift} | I _P = 40 A | _ | ±3.8 | _ | % | | Offset Voltage Including Lifetime Drift | V _{off_drift} | I _P = 0 A | _ | ±118 | _ | mV | ^[1] Typical values with ± are 3 sigma values. ^[2] Percentage of I_P. #### CHARACTERISTIC PERFORMANCE xKLCTR-20AB Key Parameters #### xKLCTR-30AB Key Parameters #### xKLCTR-30AU Key Parameters #### xKLCTR-40AB Key Parameters #### xKLCTR-50AB Key Parameters #### xKLCTR-65AB Key Parameters # CHARACTERISTIC PERFORMANCE ACS730 TYPICAL FREQUENCY RESPONSE For information regarding bandwidth characterization methods used for the ACS730, see the "Characterizing System Bandwidth" application note (https://allegromicro.com/en/insights-and-innovations/technical-documents/hall-effect-sensor-ic-publications/aneffective-method-for-characterizing-system-bandwidth-an296169) on the Allegro website. #### RESPONSE CHARACTERISTICS DEFINITIONS AND PERFORMANCE DATA ## Response Time (t_{RESPONSE}) The time interval between a) when the sensed input current reaches 90% of its final value, and b) when the sensor output reaches 90% of its full-scale value. ### Propagation Delay (tpd) The time interval between a) when the sensed input current reaches 20% of its full-scale value, and b) when the sensor output reaches 20% of its full-scale value. ### Rise Time (t_r) The time interval between a) when the sensor reaches 10% of its full-scale value, and b) when it reaches 90% of its full-scale value. #### **Output Slew Rate (SR)** The rate of change $[V/\mu s]$ in the output voltage from a) when the sensor reaches 10% of its full-scale value, and b) when it reaches 90% of its full-scale value. #### Response Time, Propagation Delay, Rise Time, and Output Slew Rate Applied current step with 10%-90% rise time = 1 μ s Test Conditions: T_A = 25°C, C_{BYPASS} = 0.1 μ F, C_L = 470 pF, V_{ZCR} = 1 nF #### POWER-ON FUNCTIONAL DESCRIPTION ### Power-On Time (tpO) When the supply is ramped to its operating voltage, the device requires a finite amount of time to power its internal components before responding to an input magnetic field. Power-On Time (t_{PO}) is defined as the time interval between a) the power supply has reached its minimum specified operating voltage $(V_{CC(min)}),$ and b) when the sensor output has settled within $\pm 10\%$ of its steady-state value under an applied magnetic field. #### **DEFINITIONS OF ACCURACY CHARACTERISTICS** **Sensitivity (Sens).** The change in sensor IC output in response to a 1A change through the primary conductor. The sensitivity is the product of the magnetic circuit sensitivity (G/A) (1 G = 0.1 mT) and the linear IC amplifier gain (mV/G). The linear IC amplifier gain is programmed at the factory to optimize the sensitivity (mV/A) for the full-scale current of the device. **Nonlinearity** (E_{LIN}). The nonlinearity is a measure of how linear the output of the sensor IC is over the full current measurement range. The nonlinearity is calculated as: $$E_{LIN} = \left\{ 1 - \frac{V_{IOUT}(I_R(max)) - V_{IOUT(Q)}}{2 \cdot V_{IOUT}(I_R(max)/2) - V_{IOUT(Q)}} \right\} \cdot 100(\%)$$ **Zero Current Output Voltage** ($V_{IOUT(Q)}$). The output of the sensor when the primary current is zero. For a unipolar supply voltage, it nominally remains at 2.5 V for a bidirectional device. Variation in $V_{IOUT(Q)}$ can be attributed to the resolution of the Allegro linear IC quiescent voltage trim and thermal drift. Offset Voltage (V_{OE}). The deviation of the device output from its ideal quiescent value of 2.5 V due to nonmagnetic causes. To convert this voltage to amperes, divide by the device sensitivity, Sens. **Total Output Error** (E_{TOT}). The difference between the current measurement from the sensor IC and the actual current (I_p), relative to the actual current. This is equivalent to the difference between the ideal output voltage and the actual output voltage, divided by the ideal sensitivity, relative to the current flowing through the primary conduction path: $$E_{TOT}(I_P) = \frac{V_{IOUT_IDEAL}(I_P) - V_{IOUT}(I_P)}{Sens_{IDEAL} \times I_P} \cdot 100 \text{ (\%)}$$ The Total Output Error incorporates all sources of error and is a function of I_P . At relatively high currents, E_{TOT} will be mostly due to sensitivity error, and at relatively low currents, E_{TOT} will be mostly due to Offset Voltage (V_{OE}). In fact, at $I_P = 0$, E_{TOT} approaches infinity due to the offset. This is illustrated in Figure 1 and Figure 2. Figure 1 shows a distribution of output voltages versus I_P at 25°C and across temperature. Figure 2 shows the corresponding E_{TOT} versus I_P . Figure 1: Output Voltage versus Sensed Current Figure 2: Total Output Error versus Sensed Current # 1 MHz Bandwidth, Galvanically Isolated Current Sensor IC in Small Footprint SOIC8 Package **Power Supply Rejection Ratio (PSRR).** The ratio of the change on VIOUT or VZCR to a change in V_{CC} in dB. $$PSRR = 20 \log_{10} \left(\left| \frac{\Delta V_{CC}}{\Delta V_{IOUT}} \right| \right)$$ Sensitivity Power Supply Rejection Ratio (PSRR). The ratio of the percent change in sensitivity from the sensitivity at 5 V to the percent change in V_{CC} in dB. $$SPSRR (V_{CC}) = 20 \log_{10} \left(\left| \frac{Sens_{VCCN} \times (V_{CC} - 5 \text{ V})}{[Sens_{VCC} - Sens_{5V}] \times 5 \text{ V}} \right| \right)$$ An SPSRR value of 15 dB means that a ten percent change in $V_{\rm CC}$ (going from 5 to 5.5 V, for example) results in around a 1.75 percent change in sensitivity. Offset Power Supply Rejection Ratio (OPSRR). The ratio of the change in offset to a change in V_{CC} in dB. $$OPSRR = 20 \log_{10} \left(\left| \frac{\Delta V_{CC}}{\Delta V_{OE}} \right| \right)$$ An OPSRR value of 30 dB means that a 500 mV change in $V_{\rm CC}$ (going from 5 to 5.5 V, for example) results in around 15 mV of change in the offset. #### **APPLICATION INFORMATION** #### Impact of External Magnetic Fields The ACS730 works by sensing the magnetic field created by the current flowing through the package. However, the sensor cannot differentiate between fields created by the current flow and external magnetic fields. This means that external magnetic fields can cause errors in the output of the sensor. Magnetic fields which are perpendicular to the surface of the package affect the output of the sensor, as it only senses fields in that one plane. The error in Amperes can be quantified as: $$Error\left(B\right) = \frac{B}{MCF}$$ where B is the strength of the external field perpendicular to the surface of the package in gauss (G), and MCF is the magnetic coupling factor in gauss/amperes (G/A). Then, multiplying by the sensitivity of the part (Sens) gives the error in mV seen at the output. For example, an external field of 1 gauss will result in around 0.1 A of error. If the ACS730KLCTR-20AB, which has a nominal sensitivity of 100 mV/A, is being used, that equates to 10 mV of error on the output of the sensor. | External Field | Error | Error (mV) | | | | |----------------|-------|------------|-----|-----|--| | (Gauss) | (A) | 20B | 40B | 50B | | | 0.5 | 0.05 | 5 | 2.5 | 2 | | | 1 | 0.1 | 10 | 5 | 4 | | | 2 | 0.2 | 20 | 10 | 8 | | #### **Estimating Total Error vs. Sensed Current** The Performance Characteristics tables give distribution values (± 3 sigma) for Total Error at $I_p(max)$ and $I_p(half);$ however, one often wants to know what error to expect at a particular current. This can be estimated by using the distribution data for the components of Total Error, Sensitivity Error, and Offset Voltage. The ± 3 sigma value for Total Error (E_{TOT}) as a function of the sensed current (I_p) is estimated as: $$E_{TOT}(I_p) = \sqrt{E_{SENS}^2 + \left(\frac{100 \times V_{OE}}{Sens \times I_p}\right)^2}$$ Here, E_{SENS} and V_{OE} are the ± 3 sigma values for those error terms. If there is an average offset voltage, then the average Total Error is estimated as: $$E_{\scriptscriptstyle TOT_{\scriptscriptstyle AVG}}(I_{\scriptscriptstyle P}) = E_{\scriptscriptstyle SENS_{\scriptscriptstyle AVG}} + \frac{100 \times V_{\scriptscriptstyle OE_{\scriptscriptstyle AVG}}}{Sens \times I_{\scriptscriptstyle P}}$$ The resulting total error will be a sum of E_{TOT} and E_{TOT_AVG} . Using these equations and the 3 sigma distributions for Sensitivity Error and Offset Voltage, the Total Error versus sensed current (I_p) is below for the ACS730KLCTR-20AB. As expected, as the sensed current (I_p) approaches zero, the error in percent goes towards infinity due to division by zero (refer to Figure 3). Figure 3: Predicted Total Error as a Function of the Sensed Current for the ACS730KLCTR-20AB ### Thermal Rise vs. Primary Current Self-heating due to the flow of current should be considered during the design of any current sensing system. The sensor, printed circuit board (PCB), and contacts to the PCB will generate heat as current moves through the system. The thermal response is highly dependent on PCB layout, copper thickness, cooling techniques, and the profile of the injected current. The current profile includes peak current, current "on-time", and duty cycle. While the data presented in this section was collected with direct current (DC), these numbers may be used to approximate thermal response for both AC signals and current pulses. The plot in Figure 4 shows the measured rise in steady-state die temperature of the ACS730 versus continuous current at an ambient temperature, T_A , of 25 °C. The thermal offset curves may be directly applied to other values of T_A . Conversely, Figure 5 shows the maximum continuous current at a given T_A . Surges beyond the maximum current listed in Figure 5 are allowed given the maximum junction temperature, $T_{J(MAX)}$ (165°C), is not exceeded. Figure 4: Self Heating in the LC Package Due to Current Flow Figure 5: Maximum Continuous Current at a Given T_△ The thermal capacity of the ACS730 should be verified by the end user in the application's specific conditions. The maximum junction temperature, $T_{J(MAX)}$ (165°C), should not be exceeded. Further information on this application testing is available in the DC and Transient Current Capability application note on the Allegro website. #### **ASEK730 Evaluation Board Layout** Thermal data shown in Figure 4 was collected using the ASEK730 Evaluation Board (TED-85-0739-003). This board includes 1500 mm² of 4 oz. copper (0.1388 mm) connected to pins 1 and 2, and to pins 3 and 4, with thermal vias connecting the layers. Top and bottom layers of the PCB are shown below in Figure 6. Figure 6: Top and Bottom Layers for ASEK730 Evaluation Board Gerber files for the ASEK730 evaluation board are available for download from the Allegro website. See the technical documents section of the ACS730 device webpage. #### PACKAGE OUTLINE DRAWING ### For Reference Only; not for tooling use (reference Allegro DWG-0000385, Rev. 2 or JEDEC MS-012AA) Dimensions in millimeters – Not to scale Dimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown Line 3 = 5 characters Line 1: Part Number Line 2: Temp, Pkg - Amps Line 3: First 5 Characters of Assembly Lot Number Belly Brand: Country of Origin, Lot Number Branding scale and appearance at supplier discretion #### PCB Layout Reference View Reference land pattern layout (reference IPC7351 SOIC127P600X175-8M); all pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerances. # 1 MHz Bandwidth, Galvanically Isolated Current Sensor IC in Small Footprint SOIC8 Package #### **Revision History** | Number | Date | Description | | |--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | _ | February 29, 2016 | Initial release | | | 1 | August 19, 2016 | Updated Isolation Characteristics table and added Frequency Response charts | | | 2 | February 28, 2017 | Updated Absolute Maximum Ratings table | | | 3 | August 29, 2017 | Added "-40AU" and "-80AU" product options; updated Isolation Characteristics table. | | | 4 | April 30, 2018 | Added "-30AB" product option | | | 5 | May 22, 2018 | Added "-30AU" product option; updated "-40AU" and "-80AU" performance characteristics; added certificate marks | | | 6 | July 30, 2018 | Added Propagation Delay characteristic (page 5) | | | 7 | October 16, 2018 | Added "-65AB" product option; updated "-80AU" Lifetime Drift test conditions | | | 8 | December 13, 2018 | Updated certificate number | | | 9 | August 16, 2019 | Added Maximum Continuous Current to Absolute Maximum Ratings table (page 2), ESD ratings table (page 2), and thermal data section (page 23) | | | 10 | March 29, 2021 | Added footnote [1] in the Selection Guide (page 2); updated ESD Ratings table test conditions (page 2); added Comparative Tracking Index to Isolation Characteristics table (page 3); updated Thermal Characteristics table test conditions and footnotes (page 3); added Primary Conductor Inductance and Output Slew Rate characteristics (page 5); updated Reference Resistive Load test condition (page 5); moved Zero Current Reference voltage from Common Electrical Characteristics to Performance Characteristics tables (pages 6-13); updated Typical Frequency Response (page 20); updated Response Characteristics Definitions and Performance Data (page 21); added Power-On Functional Description page (page 22); updated Standard Branding Reference View (page 27). | | | 11 | April 5, 2022 | Updated package drawing (page 27) | | | 12 | May 17, 2022 | Added "-S" lead free part variants (all pages); removed non-production part variants (all pages); removed ESD Ratings table (page 3); removed Maximum Continuous Current (page 3); minor editorial updates (all pages) | | | 13 | June 14, 2024 | Added part "-40AU" variants (page 2, 10); corrected Isolation Characteristics table (page 3) | | Copyright 2024, Allegro MicroSystems. Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current. Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use. Copies of this document are considered uncontrolled documents. For the latest version of this document, visit our website: www.allegromicro.com