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CONVENIENT AND ISOLATED POWER MEASUREMENTS VIA SPI OR 
I2C USING ACS71020/ACS37800 POWER MONITORING ICS 

ABSTRACT
This application note describes the I2C and SPI interfaces 
on the ACS71020/ACS37800 Power Monitoring ICs 
from Allegro MicroSystems. Power Monitoring IC is used 
throughout this application note to indicate both the 
ACS71020 and ACS37800, unless otherwise noted.

Detailed examples include reading and writing registers 
on the Power Monitoring IC via the I2C and SPI interfaces. 
Other sections describe converting the device’s fixed-
point register contents to real-world values. Application 
schematics, scope plots, and the associated Arduino 
example code are also provided. See Appendix A for full 
application schematics. See Appendix B for full source 
code including an Arduino-compatible “.ino” sketch file. 
The sketch file and schematics are also available for down-
load on Allegro’s Software Portal [1].

INTRODUCTION
The Power Monitoring IC provides users with an accurate 
and isolated solution for sensing current, voltage, and 
power in a single IC. With its I2C and SPI interfaces, the 
Power Monitoring IC provides convenient access to sixteen 
different power measurements. For more information, refer 
to the ACS71020 and ACS37800 device datasheets [2]. 

Examples listed in this application note make use of the 
“Teensy” 3.2 microcontroller [3] and Arduino software 
environment [4]. While this document focuses on implemen-
tation using the Teensy 3.2, the practices and example code 
translate directly to other Arduino boards. 

I2C OVERVIEW
The I2C bus is a synchronous, two-wire serial communica-
tion protocol that provides a full-duplex interface between 
two or more devices. The bus specifies two logic signals:

1. Serial Clock Line (SCL) output by the Master.

2. Serial Data Line (SDA) output by either the Master or 
the Slave.

Any device has the potential to become the bus Master and 
assume control over the SCL and SDA logic signal lines. 

The block diagram in Figure 1 illustrates the I2C bus topology.
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Figure 1: I2C bus diagram showing Master and Slave devices
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[3] Teensy homepage: https://www.pjrc.com/teensy/teensy31.html.
[4] Arduino homepage: https://www.arduino.cc.
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DATA TRANSMISSION
The transmission of data over I2C is composed of several 

steps outlined in the sequence below. 

1. Start Condition: Defined by a negative edge of the SDA 

line, initiated by the Master while SCL is high.

2. Address Cycle: 7-bit Slave address, plus 1 bit to indicate 

write (0) or read (1), followed by an Acknowledge bit.

3. Data Cycles: Reading or writing 8 bits of data, followed 

by an Acknowledge bit. This cycle can be repeated for 

multiple bytes of data transfer. The first data byte on a 

write could be the register address. See the following 

sections for further information.

4. Stop Condition: Defined by a positive edge on the SDA 

line while SCL is high.

Except to indicate Start or Stop conditions, SDA must remain 

stable while the clock signal is high. SDA may only change 

states while SCL is low. It is acceptable for a Start or Stop 

condition to occur at any time during the data transfer. The 

Power Monitoring IC will always respond to a Read or Write 

request by resetting the data transfer sequence.

The clock signal SCL is generated by the Master, while the 

SDA line functions as either an input or open drain output, 

depending on the direction of data transfer. Timing of the I2C 

bus is summarized in the timing diagram in Figure 2. Signal 

references and definitions of these names can be found the 

ACS71020 and ACS37800 device datasheets.

I2C BUS SPEEDS
Common I2C bus speeds are 100 kbps standard mode and 
10 kbps low-speed mode, but arbitrarily low clock frequen-
cies are also allowed. Recent revisions of the I2C protocol 
can host more nodes and run at faster speeds including 
400 kbps Fast mode and 1 Mbps Fast mode plus (Fm+), 
which are all supported by the Power Monitoring IC. Note 
the I2C specification outlines an additional 3.4 Mbps High 
Speed mode that is not supported by the Power Monitoring 
IC.

IMPLEMENTATION OF I2C  
WITH THE POWER MONITORING IC
The Power Monitoring IC may only operate as a Slave I2C 
device, therefore it cannot initiate any transactions on the I2C 
bus. 

The Power Monitoring IC will always respond to a Read or 
Write request by resetting the data transfer sequence. The 
state of the Read/Write bit is set low (0) to indicate a Write 
cycle and set high (1) to indicate a Read cycle. The Master 
monitors for an Acknowledge bit to confirm the Slave device 
(the Power Monitoring IC) is responding to the address byte 
sent by the Master. When the Power Monitoring IC decodes 
the 7-bit Slave address as valid, it responds by pulling SDA 
low during the ninth clock cycle. 

When a data write is requested by the Master, the Power 
Monitoring IC pulls SDA low during the clock cycle following 
the data byte to indicate that the data has been successfully 
received. After sending either an address byte or a data byte, 
the Master must release the SDA line before the ninth clock 
cycle, allowing the handshake process to occur. 

The I2C slave address used for the Power Monitoring IC 
throughout this application note is 127. For information on 
selecting other I2C Slave addresses, refer to the ACS71020 
and ACS37800 device datasheets.  

SDA

SCL

tLOW tHIGH

tSTA(S) tSTA(H) tDAT(S) tDAT(H) tSTO(S) tBF

Figure 2: I2C Input and Output Timing Diagram
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WRITE CYCLE OVERVIEW
The write cycle to access registers on the Power Monitoring IC are outlined in the sequence below.

1. Master initiates Start Condition.

2. Master sends 7-bit slave address and the write bit (0).

3. Master waits for ACK from Power Monitoring IC.

4. Master sends 8-bit register address (limited to 0-127 on Power Monitoring IC).

5. Master waits for ACK from Power Monitoring IC.

6. Master sends 0:7 bits of data.

7. Master waits for ACK from Power Monitoring IC.

8. Master sends 8:15 bits of data.

9. Master waits for ACK from Power Monitoring IC.

10.  Master sends 16:23 bits of data.

11.  Master waits for ACK from Power Monitoring IC.

12.  Master sends 24:31 bits of data.

13.  Master waits for ACK from Power Monitoring IC.

14.  Master initiates Stop Condition.

The I2C write sequence is further illustrated in the timing diagrams below in Figure 3.
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Figure 3: I2C Write Timing Diagram
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READ CYCLE OVERVIEW
The I2C read cycle to access registers on Power Monitoring IC is outlined in the sequence below.

1. Master initiates Start Condition.

2. Master sends 7-bit slave address and the write bit (0).

3. Master waits for ACK from Power Monitoring IC.

4. Master sends 8-bit register address.

5. Master waits for ACK from Power Monitoring IC.

6. Initiate a Start Condition. This time it is referred to as a Restart Condition.

7. Master sends 7-bit slave address and the read bit (1).

8. Master waits for ACK from Power Monitoring IC.

9. Master receives 0:7 bits of data.

10.  Master sends ACK to Power Monitoring IC.

11.  Master receives 8:15 bits of data.

12.  Master sends ACK to Power Monitoring IC.

13.  Master receives 16:23 bits of data.

14.  Master sends ACK to Power Monitoring IC.

15.  Master receives 24:31 bits of data.

16.  Master sends NACK to Power Monitoring IC.

17.  Master initiates Stop Condition.

The I2C read sequence is further illustrated in the timing diagrams in Figure 4.
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Figure 4: I2C Read Timing Diagram
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APPLICATION EXAMPLE:  
WRITING TO A REGISTER VIA I2C
To write any device over I2C, the device’s slave address must 
be known, and the read/write bit must be considered. 

In this example, the ACS71020 device’s slave address is 127 
(0x7F), which is coupled to a 1-bit write command (0). A 
value of 10 (0x0000000A) is written to register 0x0C. These 
bits correspond to a relatively benign “vmrs_avg_1” register, 
so it is acceptable to change in this example. A successful I2C 
write is shown in Figure 5.

Figure 5: I2C Write Sequence

The components of a real I2C write message in Figure 5 are 
analyzed below. The scope used in this demonstration is 
equipped with an I2C decoding package, which makes for 
simple analysis. 

1. The device’s slave address and write bit are coupled to 
form an 8-bit message: [0x7F,0x0] = 0xFE.

2. The register address 0x0C is written to the device to 
indicate which register will be changed.

3. The master provides data to the slave device beginning 
with the least significant byte [0:7].

4. The second byte is sent [8:15].

5. The third byte is sent [16:23].

6. The fourth byte is sent [24:31].

APPLICATION EXAMPLE:  
READING FROM A REGISTER VIA I2C
This example will read the 0x0C register to confirm the write 
sequence from the previous example was successful. All the 
conditions from the previous write example apply. 

The read sequence is a two-step process in which the master 

writes to the slave to indicate the desired register to read 
from. This is followed by a read command to begin the data 
transfer. A successful I2C read is shown in Figure 6.

Figure 6: I2C Read Sequence

The components of a real I2C read message in Figure 6 are 
analyzed below.

1. The device’s slave address and write bit are coupled to 
form an 8-bit message: [0x7F,0x0] = 0xFE.

2. The register address 0x0C is written to the device to 
indicate which register will be read.

3. The device’s slave address and a read bit are coupled to 
form an 8-bit message: [0x7F,0x1] = 0xFF.

4. The slave returns data starting with the least significant 
byte [0:7].

5. The second byte is sent [8:15].

6. The third byte is sent [16:23].

7. The fourth byte is sent [24:31].

Note that the data returned in step 4 is expected based on 
the write sequence example in Figure 5. 

SPI OVERVIEW
The SPI bus is a 4-wire synchronous serial communication 
protocol that provides a full-duplex interface between a 
single master and one or more slaves. The bus specifies four 
logic signals: 

1. SCLK (Serial Clock) output by the master.

2. MOSI (Master-Out Slave-In) output by the master.

3. MISO (Master-In Slave-Out) output by the slave.

4. CS (Chip Select) output by the master, active low.
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The block diagram shown in Figure 7 illustrates the I2C bus 
topology.
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Figure 7: SPI bus diagram showing Master and Slave devices

DATA TRANSMISSION
To begin communication, the master selects the slave device 
with a logic level 0 on the chip select line. If a waiting period is 
required, such as for analog-to-digital conversion, the master 
must wait for at least that period before issuing clock cycles.

During each SPI clock cycle, a full duplex data transmission 
occurs. The master sends a bit on the MOSI line and the slave 
reads it, while the slave sends a bit on the MISO line and the 
master reads it. This sequence is repeated until all bits are 
transferred even when only one-directional data transfer is 
intended. When complete, the master stops toggling the 
clock signal, and deselects the slave with a logic level 1 on 
the chip select line. The information transfer is illustrated in 
Figure 8.
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0 1 2 3 N. . .
Input Register

0 1 2 3 N. . .
Input Register

SLAVE

0 1 2 3 N. . .
Output Register

CS
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Figure 8: SPI Data Transfer

CLOCK FREQUENCY, POLARITY,  
PHASE, AND MODE
SPI is a flexible protocol—the bus master configures the 
clock frequency, polarity, and phase supported by the slave 
device. By convention, polarity and phase are named CPOL 
and CPHA respectively. CPOL controls the polarity of the 
clock and when it is 0, the idle state of the clock is 0, and the 
active state is 1. When CPOL is 1, the idle state of the clock 
is 1 and the active state is 0. CPHA controls the phase and 
is dependent on the value of CPOL. The combinations of 
polarity and phases are often referred to as modes, which are 
commonly numbered according to the convention in Table 1.

Table 1: SPI Modes

Mode CPOL CPHA Description

0 0 0
Clock active high. Data captured 
on rising edge of the clock and 

output on the falling edge.

1 0 1
Clock active high. Data captured 
on falling edge of the clock and 

output on the rising edge.

2 1 0
Clock active low. Data captured 
on falling edge of the clock and 

output on the rising edge.

3 1 1
Clock active low. Data captured 
on rising edge of the clock and 

output on the falling edge.

MODE 0
CPOL and CPHA are 0. The idle state of the clock is 0 and 
the active state is 1. Data is captured on the rising edge of 
the clock and output on the falling edge. It is important to 
note that both the master and slave must output the first bit of 
data as soon as the chip select goes low. The blue line shows 
when the data is captured, and the red line shows when the 
data is output.

Figure 9: SPI Mode 0, CPOL = 0, CPHA = 0

MODE 1
CPOL is 0 and CPHA is 1. The idle state of the clock is 0 and 
the active state is 1. Data is captured on the falling edge of 
the clock and output on the rising edge. The blue line shows 
when the data is captured, and the red line shows when the 
data is output.

Figure 10: SPI Mode 1, CPOL = 0, CPHA = 1
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MODE 2
CPOL is 1 and CPHA is 0. The idle state of the clock is 1 and 
the active state is 0. Data is captured on the falling edge of 
the clock and output on the rising edge. It is important to 
note that both the master and slave must output the first bit of 
data as soon as the chip select goes low. The blue line shows 
when the data is captured, and the red line shows when the 
data is output.

Figure 11: SPI Mode 2, CPOL = 1, CPHA = 0

MODE 3
CPOL is 1 and CPHA is 1. The idle state of the clock is 1 and 
the active state is 0. Data is captured on the rising edge of 
the clock and output on the falling edge. This is the mode 
that the Power Monitoring IC uses. The blue line shows 
when the data is captured, and the red line shows when the 
data is output.

Figure 12: SPI Mode 3, CPOL = 1, CPHA = 0

SPI IMPLEMENTATION ON THE POWER 
MONITORING IC
The Power Monitoring IC provides a full-duplex 4-pin SPI 
interface using SPI mode 3, as shown in Figure 12. An SPI 
transaction is a minimum of 40 bits in length and the data is 
transmitted with least significant bit first. 

Note: The Power Monitoring IC MISO pin continues to drive 
the MISO line when CS goes high. This may prevent other 
devices from communicating properly. It is recommended 
that the Power Monitoring IC be the only device on the SPI 
bus if using SPI communication.

INTERFACE TIMING
The Power Monitoring IC SPI interface operates in pure Slave 
mode, meaning the Master has full control over the SCLK, 
CS, and MOSI data lines. The Master may maximize data 
throughput up to fSCLK(MAX) of 10 MHz. 

Figure 13 and Figure 14 show the timing diagrams for write 
and read cycles.

Figure 13: SPI Write Timing

Figure 14: SPI Read Timing

WRITE CYCLE OVERVIEW
Write cycles consist of 7 address bits corresponding to the 
serial register, a 1-bit R/W asserted high, and 32 data bits. The 
Power Monitoring IC SPI expects the least significant byte is 
sent first. 

MOSI bits are clocked in on the rising edge of the SCLK signal 
generated by the Master. The complete SPI packet is latched 
on the rising edge of the CS signal generated by the Master. 

The simultaneous MISO signal output represents the contents 
of the corresponding SPI read packet, which includes 32 bits 
of data. The data bits correspond to the register contents 
selected during the previous read command. In the case 
where no previous read command was issued, the device will 
transmit all zeros. The write sequence is outlined below:

1. Master sets Chip Select Low.

2. Master sends 7-bit register address + write bit in the 8th bit.

3.  Master sends 0:7 bits of data.

4.  Master sends 8:15 bits of data.
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5.  Master sends 16:23 bits of data.

6.  Master sends 24:31 bits of data.

7.  Master sets Chip Select High.

READ CYCLE OVERVIEW 
Read cycles have two stages: a Read command which selects 
the serial register address, followed by another Read com-
mand to receive the data from the selected register. Both 
commands consist of 1-bit sync (low), 7 address bits identify-
ing the target register, a 1-bit R/W asserted low, and 32 data 
bits (all zeros because no data is being written). The Power 
Monitoring IC expects the least significant byte is sent first. 

In the first stage, as with the Write command, the Read com-
mand MOSI bits are clocked-in on the rising edge of the 
Master generated signal, such that the Master can sample 
them on the SCLK rising edges. Because an SPI Read com-
mand can transmit 32 data bits at one time, and the device 
registers are four bytes, the entire 32-bit contents of one 
serial register may be transmitted with one SPI frame.

The SCLK signal and data are latched on the rising edge of 
the chip select (CS) signal. During the first Read stage, the 
simultaneous MISO signal output is the contents of the SPI 
read data from the previous Read command cycle. In the 
second stage, the Read command continues on the next fall-
ing edge of the Master-generated (CS) signal. The MISO bits 
are the contents of the register selected during the first stage, 
read 16 bits at a time. The MISO bits transmit on the falling 
edges of the SCLK, such that the Master can sample them on 
the SCLK rising edges.  

The read cycle is summarized below.

1. Master sets Chip Select Low.

2. Master Sends 7-bit register address + read bit in the 8th bit.

3. Master sends 0:7 bits of data (0x0).

4. Master sends 8:15 bits of data (0x0).

5. Master sends 16:23 bits of data (0x0).

6. Master sends 24:31 bits of data (0x0).

7. Master sets Chip Select High.

8. Master sets Chip Select Low.

9. Master Sends 7-bit register address + read bit in the 8th bit.

10.  Master sends 0:7 bits of data (0x0) and simultaneously 
receives 0:7 bits of data from the device.

11.  Master sends 8:15 bits of data (0x0) and simultaneously 
receives 8:15 bits of data from the device.

12.  Master sends 16:23 bits of data (0x0) and simultaneously 
receives 16:23 bits of data from the device.

13.  Master sends 24:31 bits of data (0x0) and simultaneously 
receives 24:31 bits of data from the device.

14.  Master sets Chip Select High.

APPLICATION EXAMPLE:  
WRITING TO A REGISTER VIA SPI
In this example, a value of 10 (0x0000000A) will be written 
to the register 0x0C. These bits correspond to a relatively 
benign “vmrs_avg_1” register, so it is acceptable to change 
in this example. A successful SPI write is shown in Figure 15.

Figure 15: SPI Write Sequence

Below, the components of a real SPI write message in  
Figure 15 are analyzed.

1. The write bit and 7-bit register address are coupled to 
form an 8-bit message: [0x,0x0C] = 0x0C.

2. The data is sent over the MOSI line starting with the 
least significant byte [0:7].

3. The second byte is sent [8:15].

4. The third byte is sent [16:23].

5. The fourth byte is sent [24:31].
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APPLICATION EXAMPLE:  
READING FROM A REGISTER VIA SPI
The following read example will confirm the data written dur-
ing the write example above. A successful SPI read sequence 
is shown in Figure 16.

Figure 16: SPI Read Sequence

The components of a real SPI read message in Figure 16 are 
analyzed below.

1. The read bit and 7-bit register address are coupled to 
form an 8-bit message: [0x1,0x0C] = 0x8C.

2. The read instruction is sent over the MOSI line. The 
remaining 32 data bits are left zero because nothing is 
being written to the device.

3. The master sends a second read command. Data from 
the first read request is returned on the MISO line start-
ing with the least significant byte [0:7].

4. The second byte is sent [8:15] and received.

5. The third byte is sent [16:23] and received.

6. The fourth byte is sent [24:31] and received.

Note that the data returned in step 3 is expected based on 
the write sequence example in Figure 15. 

CUSTOMER WRITE ACCESS
An access code must be sent to the device prior to writ-
ing most of the volatile registers or EEPROM on the Power 
Monitoring IC, but some free space EEPROM registers may 
be written to regardless of the access code. Any register or 
EEPROM location may be read at any time regardless of the 
access mode.

To enter customer access mode, an access command must 
be sent via the I2C, or SPI interfaces. The command consists 

of a serial write operation with the address and data values 
shown in Table 2. There is no time limit for when the code 
may be entered. Once the customer access mode is entered, 
it is not possible to change access modes without power-
cycling the device.

Table 2: Customer Access Code

Register Name Address Data
Access_code 0x2F 0x4F70656E

Customer_access 0x30 –

APPLICATION EXAMPLE: irms REGISTER
Like most volatile registers on the Power Monitoring IC, 
the irms and vrms measurements are fixed-point numbers. 
vrms and irms registers contain the most recently calculated 
values for rms voltage and rms current over the previous 
input cycle. For converting a fixed-point number to a real-
world value, examine the irms measurement. The irms and 
vrms values are saved in the 0x20 address and are further 
described in Table 3.

Table 3: vrms and irms registers

Address Bits Name Description

0x20
15:0 vrms Most recently calculated vrms value

30:16 irms Most recently calculated irms value

The field “irms” is an unsigned 15-bit fixed point number with 
14 fractional bits and a step size of 2–14. This means that the 
value has a range from 0 to almost 2 (1.99939). Knowing this 
math, and the device’s nominal current, it is easy to convert 
these 15 bits to a real-world value. 

The ACS71020KMABTR-30B3-I2C will be reviewed in this 
application example. The -30B3 device has a nominal current 
range of 30 A, a full-scale range of 60 A, and a typical sensi-
tivity of 1092 LSB/A. 

With approximately 10 ARMS (14.1421 APEAK) applied, the irms 
register reads 5926 codes. Note that the actual values may 
vary due to small differences in device sensitivity. 

The “irms” number can be multiplied by the full-scale current 
range (30 A in this case) to convert to amps. Given that irms is 
an unsigned 15-bit fixed point number with 14 fractional bits 
and a step size of 2–14, the code value can be converted to 
amps using the following equation.

Equation 1:

code × step size × nominal current range
Inputting real values into Equation 1 confirms the 10 ARMS 
measurement. 

5926 × 2–14 × 30 ARMS = 10.8508 ARMS
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CONCLUSION
The ACS71020 and ACS37800 are highly versatile power 
monitoring ICs from Allegro MicroSystems with sixteen dif-
ferent power monitoring registers that are easily accessible 
over I2C and SPI interfaces. 

The application schematics and Arduino “.ino” sketch file 
used with this application note are listed in Appendix A and 
Appendix B. This material is available for download on Alle-
gro’s Software Portal. 
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APPENDIX A: APPLICATION SCHEMATICS
Application schematics and Teensy 3.2 connections are shown in Figure 17. R2 through R5 are installed for I2C assemblies as 
that protocol specifies an open drain output. R2 through R5 are removed for SPI assemblies as that protocol specifies push/
pull structures on the pins. R6 is either installed or “DNI” on this schematic to tell the Teensy code to operate in I2C or SPI 
mode.

For more information regarding the Teensy microcontroller, visit PJRC at the following link:  
https://www.pjrc.com/teensy/card7a_rev1.pdf.

For more information regarding the Arduino software environment, visit the Arduino homepage at the following link:   
https://www.arduino.cc.

Figure 17: Application Schematic for Power Monitoring IC and the Teensy 3.2 microcontroller

https://www.pjrc.com/teensy/card7a_rev1.pdf
https://www.arduino.cc
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APPENDIX B: FULL ARDUINO SOURCE CODE FOR ACS71020 AND TEENSY 3.2 
The snippet below shows full Arduino source code used alongside this application note. 

The full “.ino” Arduino sketch is available on Allegro Microsystem’s Software Portal under the ACS71020 device page. To reg-
ister with Allegro’s software portal and view the ACS71020 source code, visit https://registration.allegromicro.com/login.

/*
 *    Example source code for an Arduino to show how
 *    to use SPI and I2C to communicate with an Allegro ACS71020
 *
 *    Written by K. Robert Bate, Allegro MicroSystems, LLC.
 *
 *    ACS71020_SPI_Example is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 */
#include <SPI.h>
#include <Wire.h>

#define kNOERROR 0
#define kREADERROR 1
#define kWRITEERROR 2

const uint16_t SPIChipSelectPin = 23;
const uint16_t I2CAddress = 127;
const uint16_t ProtocolSelectPin = 16;

const uint32_t WRITE = 0x00;
const uint32_t READ = 0x80;
const uint32_t COMMAND_MASK = 0x80;
const uint32_t ADDRESS_MASK = 0x7F;

unsigned long nextTime;
bool ledOn = false;

bool UseI2C = false;

// Setup the demo board.
void setup()
{
 // Initialize serial
    Serial.begin(115200);

 // Turn on the pullup so the determination of communication protocol can be made.
    pinMode(ProtocolSelectPin, INPUT_PULLUP);

    delay(50); // Wait for the pullup to take affect

    UseI2C = (digitalRead(ProtocolSelectPin) == HIGH);

    if (UseI2C)
    {
        // Initialize I2C
        Wire.begin(); 
        Wire.setClock(400000);
    }
    else
    {
        // Initialize SPI
        SPI.begin(); 

https://registration.allegromicro.com/login
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        // Setup chip select
        pinMode(SPIChipSelectPin, OUTPUT);
        digitalWrite(SPIChipSelectPin, HIGH);

        SPI.setSCK(14);

        // Make sure all of the SPI pins are
        // ready by doing a read
        uint32_t unused;
        Read(0x0, unused);
    }

    Write(0x2F, 0x4F70656E);   // Unlock device
    
    // If the Arduino has built in USB, keep the next line
    // in to wait for the Serial to initialize
    while (!Serial);
    
    if (UseI2C)
    {
        Serial.println(“Using I2C version of ACS71020”);
    }
    else
    {
        Serial.println(“Using SPI version of ACS71020”);
    }

 pinMode(LEDPin, OUTPUT);
    digitalWrite(LEDPin, LOW);
    nextTime = millis();
}

/*
 * Every 500 milliseconds, read the ACS71020 and print out the values
 */
void loop()
{
    uint32_t vrms_irms;
    uint32_t vrms;
    uint32_t irms;
    uint32_t pactive;
    uint32_t paparent;
    uint32_t pimag;
    uint32_t pfactor;
    uint32_t numptsout;
    uint32_t vrmsavgonesec_irmsavgonesec;
    uint32_t vrmsavgonesec;
    uint32_t irmsavgonesec;
    uint32_t vrmsavgonemin_irmsavgonemin;
    uint32_t vrmsavgonemin;
    uint32_t irmsavgonemin;
    uint32_t pactavgonesec;
    uint32_t pactavgonemin;
    uint32_t vcodes;
    uint32_t icodes;
    uint32_t pinstant;
    uint32_t flags;

    // Every 1/2 second, toggle the state of the LED and read the ACS71020
    if (nextTime < millis())
    {
        Read(0x20, vrms_irms);
        Read(0x21, pactive);
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        Read(0x22, paparent);
        Read(0x23, pimag);
        Read(0x24, pfactor);
        Read(0x25, numptsout);
        Read(0x26, vrmsavgonesec_irmsavgonesec);
        Read(0x27, vrmsavgonemin_irmsavgonemin);
        Read(0x28, pactavgonesec);
        Read(0x29, pactavgonemin);
        Read(0x2A, vcodes);
        Read(0x2B, icodes);
        Read(0x2C, pinstant);
        Read(0x2D, flags);

        vrms = vrms_irms & 0x7FFF;
        Serial.printf(“vrms = %ul\n”, vrms);
        irms = (vrms_irms >> 16) & 0x7FFF;
        Serial.printf(“irms = %ul\n”, irms);
        pactive = pactive & 0x1FFFF;
        Serial.printf(“pactive = %dl\n”, pactive);
        paparent = paparent & 0xFFFF;
        Serial.printf(“paparent = %ul\n”, paparent);
        pimag = pimag & 0x1FFFF;
        Serial.printf(“pimag = %ul\n”, pimag);
        pfactor = pfactor & 0x7FF;
        Serial.printf(“pfactor = %dl\n”, pfactor);
        numptsout = numptsout & 0x1FF;
        Serial.printf(“numptsout = %ul\n”, numptsout);
        vrmsavgonesec = vrmsavgonesec_irmsavgonesec & 0x7FFF;
        Serial.printf(“vrmsavgonesec = %ul\n”, vrmsavgonesec);
        irmsavgonesec = (vrmsavgonesec_irmsavgonesec >> 16) & 0x7FFF;
        Serial.printf(“irmsavgonesec = %ul\n”, irmsavgonesec);
        vrmsavgonemin = vrmsavgonemin_irmsavgonemin & 0x7FFF;
        Serial.printf(“vrmsavgonemin = %ul\n”, vrmsavgonemin);
        irmsavgonemin = (vrmsavgonemin_irmsavgonemin >> 16) & 0x7FFF;
        Serial.printf(“irmsavgonemin = %ul\n”, irmsavgonemin);
        pactavgonesec = pactavgonesec & 0x1FFFF;
        Serial.printf(“pactavgonesec = %ul\n”, pactavgonesec);
        pactavgonemin = pactavgonemin & 0x1FFFF;
        Serial.printf(“pactavgonemin = %ul\n”, pactavgonemin);
        vcodes = vcodes & 0x1FFFF;
        Serial.printf(“vcodes = %ul\n”, vcodes);
        icodes = icodes & 0x1FFFF;
        Serial.printf(“icodes = %ul\n”, icodes);
        Serial.printf(“pinstant = %ul\n”, pinstant);
        Serial.print(“pospf = “);
        Serial.println((flags >> 6) & 0x1);
        Serial.print(“posangle = “);
        Serial.println((flags >> 5) & 0x1);
        Serial.print(“undervoltage = “);
        Serial.println((flags >> 4) & 0x1);
        Serial.print(“overvoltage = “);
        Serial.println((flags >> 3) & 0x1);
        Serial.print(“faultlatched = “);
        Serial.println((flags >> 2) & 0x1);
        Serial.print(“faultout = “);
        Serial.println((flags >> 1) & 0x1);
        Serial.print(“vzerocrossout = “);
        Serial.println((flags >> 0) & 0x1);
        Serial.println();

  if (ledOn)
        {
            digitalWrite(LEDPin, LOW);



15
955 PERIMETER ROAD • MANCHESTER, NH 03103 • USA
+1-603-626-2300 • FAX: +1-603-641-5336 • ALLEGROMICRO.COM

APPLICATION INFORMATION296180-AN, Rev. 1
MCO-0000824

            ledOn = false;
        }
        else
        {
            digitalWrite(LEDPin, HIGH);
            ledOn = true;
        }

        nextTime = millis() + 500L;
    }
}

/*
 * Read a register
 *
 *    address   - the address to be written
 *    value    - the value that was read
 *    returns   - the error (0 otherwise)
 */
uint16_t Read(uint8_t address, uint32_t& value)
{
    uint16_t results = kNOERROR;

    if (UseI2C)
    {
        Wire.beginTransmission(I2CAddress);
        Wire.write(address);
        results = Wire.endTransmission();

        if (results == kNOERROR)
        {
            Wire.requestFrom(I2CAddress, 4u);

            value = Wire.read();    // receive a byte as character
            value |= Wire.read() << 8;    // receive a byte as character
            value |= Wire.read() << 16;    // receive a byte as character
            value |= Wire.read() << 24;    // receive a byte as character
        }
    }
    else
    {
        SPI.beginTransaction(SPISettings(1000000, LSBFIRST, SPI_MODE3));

        // Combine the register address and the command into one byte
        uint8_t command = (address & ADDRESS_MASK) | READ;

        // take the chip select low to select the device
        digitalWrite(SPIChipSelectPin, LOW);

        // send the device the register you want to read
        SPI.transfer(command);
        SPI.transfer(0);
        SPI.transfer(0);
        SPI.transfer(0);
        SPI.transfer(0);

        digitalWrite(SPIChipSelectPin, HIGH);
        delayMicroseconds(4);
        digitalWrite(SPIChipSelectPin, LOW);

        // send the command again to read the contents
        SPI.transfer(command);
        value = (uint32_t)SPI.transfer(0);
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        value |= (uint32_t)SPI.transfer(0) << 8;
        value |= (uint32_t)SPI.transfer(0) << 16;
        value |= (uint32_t)SPI.transfer(0) << 24; // high byte

        // take the chip select high to de-select
        digitalWrite(SPIChipSelectPin, HIGH);

        SPI.endTransaction();
    }

    return results;
}

/*
 * Write a register
 *
 *    address   - the address to be written
 *    value    - the value to be written
 *    returns   - the error (0 otherwise)
 */
uint16_t Write(uint8_t address, uint32_t value)
{
    uint16_t results = kNOERROR;

    if (UseI2C)
    {
        Wire.beginTransmission(I2CAddress);
  // Send the address then the value (least significant byte first)
        Wire.write(address);
        Wire.write(value);    
        Wire.write(value >> 8);
        Wire.write(value >> 16);
        Wire.write(value >> 24);
        results = Wire.endTransmission();
    }
    else
    {
        SPI.beginTransaction(SPISettings(1000000, LSBFIRST, SPI_MODE3));

        // Combine the register address and the command into one byte
        uint8_t command = ((address & ADDRESS_MASK) | WRITE);

        // take the chip select low to select the device:
        digitalWrite(SPIChipSelectPin, LOW);

  // Send the command then the value (least significant byte first)
        SPI.transfer(command);
        SPI.transfer((uint8_t)value);
        SPI.transfer((uint8_t)(value >> 8));
        SPI.transfer((uint8_t)(value >> 16));
        SPI.transfer((uint8_t)(value >> 24));

        // take the chip select high to de-select:
        digitalWrite(SPIChipSelectPin, HIGH);

        SPI.endTransaction();
    }
    if (address < 0x10)
    {
        delay(30);  // If writing to EEPROM delay 30 ms
    }

    return results;
}
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