A1152-F, A1153-F, A1155-F, and A1156-F

Chopper-Stabilized Two-Wire Hall-Effect Switches

FEATURES AND BENEFITS

- AEC-Q100 automotive qualified
- Factory-set temperature coefficient (TC) for use with ferrite magnets
- High-speed, 4-phase chopper stabilization
- Low switchpoint drift throughout temperature range
- Low sensitivity to thermal and mechanical stresses
- On-chip protection
- Supply transient protection
- Reverse-battery protection
- On-board voltage regulator
- 3 to 24 V operation
- Solid-state reliability

Continued on the next page...

PACKAGE: 2-Pin, Ultra-Mini SIP (suffix UB)

DESCRIPTION

The A1152-F, A1153-F, A1155-F, and A1156-F comprise a family of two-wire, unipolar, Hall-effect switches, which are factory-trimmed to optimize magnetic switchpoint accuracy. These devices are produced on the Allegro ${ }^{\text {TM }}$ advanced BiCMOS wafer fabrication process, which implements a high-frequency, 4-phase, chopper stabilization technique. This technique achieves magnetic stability over the full operating temperature range, and eliminates offsets inherent in devices with a single Hall element that are exposed to harsh application environments.

The A115x family has a number of automotive applications. These include sensing seat track position, seat belt buckle presence, hood/trunk latching, and shift selector position.

Two-wire unipolar switches are particularly advantageous in cost-sensitive applications because they require one less wire for operation versus the more traditional open-collector output switches. Additionally, the system designer inherently gains diagnostics because there is always output current flowing, which should be in either of two narrow ranges. Any current level not within these ranges indicates a fault condition.

Continued on the next page...

Functional Block Diagram

FEATURES AND BENEFITS (CONTINUED)

- Robust EMC and ESD performance
- Industry-leading ISO 7637-2 performance through use of proprietary, 40 V clamping structures
- Extended Operating Ambient temperature range, $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- UB package with integrated $0.1 \mu \mathrm{~F}$ bypass capacitor

DESCRIPTION (CONTINUED)

The UB is a 2-pin, ultra-mini, single inline package (SIP) for through-hole mounting, and it is lead (Pb) free, with 100% mattetin leadframe plating.

SELECTION GUIDE

Part Number	Packing	Package	Output (I_{CC}) in South Polarity Field	Supply Current at $\mathrm{ICC}_{\mathrm{CL}}$ (mA)	Magnetic Operate Point, B_{OP} at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (G)
A1152LUBTN-F-T	13-in. reel, 4000 pieces/reel	2-pin SIP through-hole	Low	5 to 6.9	58 to 100
A1153LUBTN-F-T	13-in. reel, 4000 pieces/reel	2-pin SIP through-hole	High	5 to 6.9	58 to 100
A1155LUBTN-F-T	13-in. reel, 4000 pieces/reel	2-pin SIP through-hole	Low	5 to 6.9	16 to 60
A1156LUBTN-F-T	13-in. reel, 4000 pieces/reel	2-pin SIP through-hole	High	5 to 6.9	16 to 60

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol		Notes	Rating
	Unit			
Forward Supply Voltage	V_{CC}		28	V
Reverse Supply Voltage	$\mathrm{V}_{\mathrm{RCC}}$		-18	V
Magnetic Flux Density	B		Unlimited	G
Operating Ambient Temperature	T_{A}	Range L	-40 to 150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J}}(\max)$		165	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$		-65 to 170	${ }^{\circ} \mathrm{C}$

INTERNAL DISCRETE CAPACITOR RATINGS

Characteristic	Symbol	Notes	Rating	Unit
Rated Normal Capacitance	$\mathrm{C}_{\text {SUPPLY }}$	Connected between VCC and GND	0.1	$\mu \mathrm{~F}$
Rated Voltage	$\mathrm{V}_{\text {CSUPPLY }}$			50
Rated Capacitor Tolerance			V	
Temperature Designator			± 10	$\%$

Pinout Diagram

Terminal List Table

Number	Name	Function
1	VCC	Input power supply
2	GND	Ground terminal

UB Package

ELECTRICAL CHARACTERISTICS: Valid at $T_{A}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{J}}<\mathrm{T}_{\mathrm{J}}(\mathrm{max}), \mathrm{C}_{\mathrm{BYP}}=0.01 \mu \mathrm{~F}$ (excluding UB), through operating supply voltage range, unless otherwise noted

Characteristics	Symbol	Test Conditions		Min.	Typ.	Max.	Unit
Supply Voltage ${ }^{[1][2]}$	V_{Cc}	Operating, $\mathrm{T}_{J} \leq 165^{\circ} \mathrm{C}$		3.0	-	24	V
Supply Current	$\mathrm{I}_{\mathrm{CC}(\mathrm{L})}$	A1152, A1155	$\mathrm{B}>\mathrm{B}_{\mathrm{OP}}$	5	-	6.9	mA
		A1153, A1156	$\mathrm{B}<\mathrm{B}_{\mathrm{RP}}$				
	$\mathrm{I}_{\mathrm{CC}(\mathrm{H})}$	A1152, A1155	$\mathrm{B}<\mathrm{B}_{\mathrm{RP}}$	12	-	17	mA
		A1153, A1156	$\mathrm{B}>\mathrm{B}_{\mathrm{OP}}$				
Supply Zener Clamp Voltage	$\mathrm{V}_{\mathrm{Z} \text { (sup) }}$	$\mathrm{I}_{\mathrm{CC}(\mathrm{L})}(\mathrm{max})+3 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		28	-	-	V
Supply Zener Clamp Current	$\mathrm{I}_{\text {(sup) }}$	$\mathrm{V}_{\mathrm{Z} \text { (sup) }}=28 \mathrm{~V}$		-	-	$\begin{gathered} \mathrm{I}_{\mathrm{CC}(\mathrm{~L})}(\max) \\ +3 \mathrm{~mA} \end{gathered}$	mA
Reverse Supply Current	$\mathrm{I}_{\mathrm{RCC}}$	$\mathrm{V}_{\mathrm{RCC}}=-18 \mathrm{~V}$		-	-	-1.6	mA
Output Slew Rate ${ }^{[3]}$	di/dt	Integrated bypass capacitor, capacitance of probe $\mathrm{C}_{\mathrm{S}}=20 \mathrm{pF}$		-	0.22	-	$\mathrm{mA} / \mathrm{\mu s}$
Chopping Frequency	f_{c}			-	700	-	kHz
Power-Up Time ${ }^{[4][5]}$	$\mathrm{t}_{\text {on }}$	A1152, A1155	$B>B_{O P}+10 \mathrm{G}$	-	-	25	$\mu \mathrm{s}$
		A1153, A1156	$B<B_{R P}-10 \mathrm{G}$				
Power-Up State ${ }^{[2][4][6][7]}$	POS	$\mathrm{t}_{\text {on }}<\mathrm{t}_{\text {on }}(\mathrm{max}), \mathrm{V}_{\text {CC }}$ slew rate $>25 \mathrm{mV} / \mu \mathrm{s}$		-	$\mathrm{I}_{\mathrm{CC}(\mathrm{H})}$	-	-

${ }^{[1]} \mathrm{V}_{\mathrm{CC}}$ represents the generated voltage between the VCC pin and the GND pin.
${ }^{[2]}$ The V_{CC} slew rate must exceed $600 \mathrm{mV} / \mathrm{ms}$ from 0 to 3 V . A slower slew rate through this range can affect device performance.
${ }^{[3]}$ Measured without bypass capacitor between VCC and GND. Use of a bypass capacitor results in slower current change.
${ }^{[4]}$ Power-Up Time is measured without and with bypass capacitor of $0.01 \mu \mathrm{~F}$. Adding a larger bypass capacitor would cause longer Power-Up Time.
${ }^{[5]}$ Guaranteed by characterization and design.
[6] Power-Up State as defined is true only with a V_{CC} slew rate of $25 \mathrm{mV} / \mu \mathrm{s}$ or greater.
${ }^{[7]}$ For $t>t_{\text {on }}$ and $B_{R P}<B<B_{O P}$, Power-Up State is not defined.

MAGNETIC CHARACTERISTICS [1]: Valid at $T_{A}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{J}}<\mathrm{T}_{\mathrm{J}}(\mathrm{max})\right)$, unless otherwise noted

Characteristics	Symbol		Test Conditions	Min.	Typ.	Max.	Unit ${ }^{[2]}$
MAGNETIC CHARACTERISTICS							
Magnetic Operating Point	$\mathrm{B}_{\text {OP }}$	$\begin{aligned} & 1152, \\ & 1153 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	72	-	118	G
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	58	-	100	G
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	37	-	68	G
		$\begin{aligned} & 1155, \\ & 1156 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	23	-	73	G
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	16	-	60	G
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	9	-	49	G
Magnetic Release Point	B_{RP}	$\begin{aligned} & 1152, \\ & 1153 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	56	-	103	G
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	46	-	85	G
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	22	-	58	G
		$\begin{aligned} & 1155, \\ & 1156 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	6	-	53	G
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4	-	45	G
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	4	-	39	G
Hysteresis	$\mathrm{B}_{\mathrm{HYS}}$	$\begin{aligned} & \hline 1152, \\ & 1153, \\ & 1155, \\ & 1156 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	5	-	30	G
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5	-	30	G
			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	5	-	30	G

${ }^{\text {[1] }}$ Relative values of B use the algebraic convention, where positive values indicate south magnetic polarity, and negative values indicate north magnetic polarity; therefore greater B values indicate a stronger south polarity field (or a weaker north polarity field, if present).
[2] 1 G (gauss) $=0.1 \mathrm{mT}$ (millitesla).

THERMAL CHARACTERISTICS: may require derating at maximum conditions; see application information

Characteristic	Symbol	Test Conditions*	Value
Unit			
Package Thermal Resistance	$\mathrm{R}_{\theta \mathrm{JA}}$	Package UB, on 1-layer PCB with copper limited to solder pads	213
${ }^{\circ} \mathrm{C} / \mathrm{W}$			

*Additional thermal information available on the Allegro website

UB Power Derating Curve

CHARACTERISTIC PERFORMANCE

A1152-F/A1153-F
Average Supply Current (Low) versus Temperature

A1152-F/A1153-F
Average Supply Current (Low) versus Temperature

A1152-F/A1153-F
Average Supply Current (High) versus Temperature

A1155-F/A1156-F
Average Supply Current (Low) versus Supply Voltage

A1155-F/A1156-F
Average Supply Current (Low) versus Supply Voltage

A1155-F/A1156-F
Average Supply Current (High) versus Supply Voltage

A1152-F/A1153-F
Average Operate Point versus Temperature

A1152-F/A1153-F

A1152-F/A1153-F
Average Switchpoint Hysteresis versus Temperature

A1155-F/A1156-F
Average Operate Point versus Temperature

A1155-F/A1156-F
Average Release Point versus Temperature

A1155-F/A1156-F
Average Switchpoint Hysteresis versus Temperature

FUNCTIONAL DESCRIPTION

The A1152 and A1155 output, I_{CC}, switches low after the magnetic field at the Hall sensor IC exceeds the operate point threshold, B_{OP}. When the magnetic field is reduced to below the release point threshold, B_{RP}, the device output goes high. This is shown in Figure 1, panel A.

In the case of the reverse output polarity, as in the A1153 and A1156, the device output switches high after the magnetic field
at the Hall sensor IC exceeds the operate point threshold, B_{OP}. When the magnetic field is reduced to below the release point threshold, B_{RP}, the device output goes low (panel B).
The difference between the magnetic operate and release points is called the hysteresis of the device, $\mathrm{B}_{\text {HYS }}$. This built-in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise.

Figure 1: Alternative Switching Behaviors Available in the A115x Device Family.
On the horizontal axis, the $B+$ direction indicates increasing south polarity magnetic field strength, and the B - direction indicates decreasing south polarity field strength (including the case of increasing north polarity).

Chopper-Stabilized Two-Wire Hall-Effect Switches

Figure 2: Typical Application Circuits

Chopper Stabilization Technique

When using Hall-effect technology, a limiting factor for switchpoint accuracy is the small signal voltage developed across the Hall element. This voltage is disproportionally small relative to the offset that can be produced at the output of the Hall sensor IC. This makes it difficult to process the signal while maintaining an accurate, reliable output over the specified operating temperature and voltage ranges. Chopper stabilization is a unique approach used to minimize Hall offset on the chip. The Allegro technique, namely Dynamic Quadrature Offset Cancellation, removes key sources of the output drift induced by thermal and mechanical stresses. This offset reduction technique is based on a signal modulation-demodulation process. The undesired offset signal is separated from the magnetic field-induced signal in the frequency domain, through modulation. The subsequent demodulation acts as a modulation process for the offset, causing the magnetic field-induced signal to recover its original spectrum
at base band, while the DC offset becomes a high-frequency signal. The magnetic-sourced signal then can pass through a lowpass filter, while the modulated DC offset is suppressed. The chopper stabilization technique uses a 350 kHz high frequency clock. For demodulation process, a sample and hold technique is used, where the sampling is performed at twice the chopper frequency. This high-frequency operation allows a greater sampling rate, which results in higher accuracy and faster signal-processing capability. This approach desensitizes the chip to the effects of thermal and mechanical stresses, and produces devices that have extremely stable quiescent Hall output voltages and precise recoverability after temperature cycling. This technique is made possible through the use of a BiCMOS process, which allows the use of low-offset, low-noise amplifiers in combination with high-density logic integration and sample-and-hold circuits.

Figure 3: Chopper Stabilization Circuit (Dynamic Quadrature Offset Cancellation)

Chopper-Stabilized Two-Wire Hall-Effect Switches

Power Derating

The device must be operated below the maximum junction temperature of the device, $\mathrm{T}_{\mathrm{J}}(\mathrm{max})$. Under certain combinations of peak conditions, reliable operation may require derating supplied power or improving the heat dissipation properties of the application. This section presents a procedure for correlating factors affecting operating T_{J}. (Thermal data is also available on the Allegro MicroSystems Web site.)

The Package Thermal Resistance, $\mathrm{R}_{\theta J \mathrm{~A}}$, is a figure of merit summarizing the ability of the application and the device to dissipate heat from the junction (die), through all paths to the ambient air. Its primary component is the Effective Thermal Conductivity, K , of the printed circuit board, including adjacent devices and traces. Radiation from the die through the device case, $\mathrm{R}_{\theta \mathrm{JC}}$, is relatively small component of $\mathrm{R}_{\theta \mathrm{JA}}$. Ambient air temperature, T_{A}, and air motion are significant external factors, damped by overmolding.

The effect of varying power levels (Power Dissipation, P_{D}), can be estimated. The following formulas represent the fundamental relationships used to estimate T_{J}, at P_{D}.

$$
\begin{align*}
P_{D} & =V_{I N} \times I_{I N} \tag{1}\\
\Delta T & =P_{D} \times R_{\theta J A} \tag{2}\\
T_{J} & =T_{A}+\Delta T \tag{3}
\end{align*}
$$

For example, given common conditions such as: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{CC}}=4 \mathrm{~mA}$, and $\mathrm{R}_{\theta \mathrm{JA}}=140^{\circ} \mathrm{C} / \mathrm{W}$, then:

$$
\begin{gathered}
P_{D}=V_{C C} \times I_{C C}=12 \mathrm{~V} \times 4 \mathrm{~mA}=48 \mathrm{~mW} \\
\Delta T=P_{D} \times R_{\theta J A}=48 \mathrm{~mW} \times 140{ }^{\circ} \mathrm{C} / \mathrm{W}=7^{\circ} \mathrm{C} \\
T_{J}=T_{A}+\Delta T=25^{\circ} \mathrm{C}+7^{\circ} \mathrm{C}=32^{\circ} \mathrm{C}
\end{gathered}
$$

A worst-case estimate, $\mathrm{P}_{\mathrm{D}}(\max)$, represents the maximum allowable power level $\left(\mathrm{V}_{\mathrm{CC}}(\max), \mathrm{I}_{\mathrm{CC}}(\max)\right)$, without exceeding $\mathrm{T}_{\mathrm{J}}(\max)$, at a selected $\mathrm{R}_{\theta J \mathrm{~A}}$ and T_{A}.

Example: Reliability for V_{CC} at $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$, package UA, using a low-K PCB.

Observe the worst-case ratings for the device, specifically:
$\mathrm{R}_{\theta \mathrm{JA}}=213^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{T}_{\mathrm{J}}(\max)=165^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}(\max)=24 \mathrm{~V}$, and $\mathrm{I}_{\mathrm{CC}}(\max)=17 \mathrm{~mA}$.

Calculate the maximum allowable power level, P_{D} (max). First, invert equation 3 :

$$
\Delta T_{\max }=T_{J}(\max)-T_{A}=165^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}=15^{\circ} \mathrm{C}
$$

This provides the allowable increase to T_{J} resulting from internal power dissipation. Then, invert equation 2 :

$$
P_{D}(\max)=\Delta T_{\max } \div R_{\theta J A}=15^{\circ} \mathrm{C} \div 213^{\circ} \mathrm{C} / \mathrm{W}=70.5 \mathrm{~mW}
$$

Finally, invert equation 1 with respect to voltage:

$$
V_{C C(e s t)}=P_{D}(\max) \div I_{C C}(\max)=70.5 \mathrm{~mW} \div 17 \mathrm{~mA}=4.15 \mathrm{~V}
$$

The result indicates that, at T_{A}, the application and device can dissipate adequate amounts of heat at voltages $\leq \mathrm{V}_{\mathrm{CC}}$ (est).
Compare $\mathrm{V}_{\mathrm{CC}(\text { est })}$ to $\mathrm{V}_{\mathrm{CC}}(\max)$. If $\mathrm{V}_{\mathrm{CC}(\text { est })} \leq \mathrm{V}_{\mathrm{CC}}(\max)$, then reliable operation between $V_{C C(e s t)}$ and $V_{C C}(\max)$ requires enhanced $R_{\text {日JA }}$. If $V_{C C(e s t)} \geq V_{C C}(\max)$, then operation between $V_{C C(e s t)}$ and $\mathrm{V}_{\mathrm{CC}}(\max)$ is reliable under these conditions.

Revision History

Number	Date	Description
-	September 29, 2014	Initial release
1	April 2,2015	Updated branding info on package drawing
2	September 21, 2015	Added AEC-Q100 qualification under Features and Benefits
3	June 21,2016	Corrected internal discrete capacitor ratings
4	January 16, 2019	Minor editorial updates
5	January 22,2020	Minor editorial updates
6	February 3,2022	Updated package drawing (page 12)

Copyright 2022, Allegro MicroSystems.
Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.
Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.
Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:
www.allegromicro.com

